Binding of human immunodeficiency virus type 1 nucleocapsid protein to psi-RNA-SL3. 2000

M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
Department of Chemistry, Center for Science and Technology, Syracuse University, NY 13224-4100, USA.

The interaction of the nucleocapsid protein NCp7, from the pNL4-3 isolate of HIV-1, with psi-RNA-SL3, with the sequence 5'-GGACUAGCGGAGGCUAGUCC, was studied using non-denaturing gel electrophoresis. Two kinds of experiments were performed, using buffered solutions of radiolabeled RNA and unlabeled protein. In the 'dilution' experiments, the total RNA concentration, RT, was varied for a series of solutions, but kept equal to the total protein concentration, PT, In the 'titration' experiments, solutions having RT constant but with varying PT were analyzed. The solutions were electrophoresed and the autoradiographic spot intensities, proportional to the amounts of the different species present, were measured. The intensities were fit to a number of equilibrium models, differing in species stoichiometries, by finding the best values of the binding constants. It was shown that NCp7 protein and SL3 RNA combine to form at least two complexes. When PT is below approximately 10 microM, a complex that contains two RNAs and one protein forms. Increasing PT to approximately 100 microM causes the 2:1 complex to oligomerize, forming a species having eight RNAs and four proteins. For the dilution experiments, run at 5 degrees C at an ionic strength of 31 mM, we found K1 for the 2:1 complex is approximately 10(11) M(-2) and K2 for the 8:4 complex is approximately 10(16) M(-3). The titration experiments returned K1 approximately 10(7) M(-2) (poorly determined) and K2 approximately 10(19) M(-3). The analysis was complicated by the loss of RNA at higher protein concentrations, due to formation of an insoluble species containing both RNA and protein, which does not enter the gel. Correcting for this changes the calculated values of equilibrium constants, but not the molecularities determined by our analysis. The observation that a small complex can oligomerize to form a larger species is consistent with the fact that NCp7 organizes and condenses the genome in the virus particle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
January 1998, Science (New York, N.Y.),
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
July 1994, Virology,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
March 1998, Journal of virology,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
March 1998, Journal of virology,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
November 2005, Journal of virology,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
April 1992, The Journal of biological chemistry,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
June 2020, Biochemical and biophysical research communications,
M F Shubsda, and C A Kirk, and J Goodisman, and J C Dabrowiak
March 2002, Biochemical and biophysical research communications,
Copied contents to your clipboard!