Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac. 2000

D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
Ionizing Radiation Standards, Institute for National Measurement Standards, National Research Council Canada, Ottawa.

We have benchmarked photon beam simulations with the EGS4 user code BEAM [Rogers et al., Med. Phys. 22, 503-524 (1995)] by comparing calculated and measured relative ionization distributions in water from the 10 and 20 MV photon beams of the NRC linac. Unlike previous calculations, the incident electron energy is known independently to 1%, the entire extra-focal radiation is simulated, and electron contamination is accounted for. The full Monte Carlo simulation of the linac includes the electron exit window, target, flattening filter, monitor chambers, collimators, as well as the PMMA walls of the water phantom. Dose distributions are calculated using a modified version of the EGS4 user code DOSXYZ which additionally allows scoring of average energy and energy fluence in the phantom. Dose is converted to ionization by accounting for the (L/rho)water(air) variation in the phantom, calculated in an identical geometry for the realistic beams using a new EGS4 user code, SPRXYZ. The variation of (L/rho)water(air) with depth is a 1.25% correction at 10 MV and a 2% correction at 20 MV. At both energies, the calculated and the measured values of ionization on the central axis in the buildup region agree within 1% of maximum ionization relative to the ionization at 10 cm depth. The agreement is well within statistics elsewhere. The electron contamination contributes 0.35(+/- 0.02) to 1.37(+/- 0.03)% of the maximum dose in the buildup region at 10 MV and 0.26(+/- 0.03) to 3.14(+/- 0.07)% of the maximum dose at 20 MV. The penumbrae at 3 depths in each beam (in g/cm2), 1.99 (dmax, 10 MV only), 3.29 (dmax, 20 MV only), 9.79 and 19.79, agree with ionization chamber measurements to better than 1 mm. Possible causes for the discrepancy between calculations and measurements are analyzed and discussed in detail.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging
D020266 Radiotherapy, Conformal A therapy using IONIZING RADIATION where there is improved dose homogeneity within the tumor and reduced dosage to uninvolved structures. The precise shaping of dose distribution is achieved via the use of computer-controlled multileaf collimators. Conformal Radiotherapy,3-D Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapy,3-D Conformal Radiotherapies,Conformal Radiotherapies,Conformal Radiotherapies, 3-D,Conformal Radiotherapies, Three-Dimensional,Conformal Radiotherapy, 3-D,Conformal Radiotherapy, Three-Dimensional,Radiotherapies, 3-D Conformal,Radiotherapies, Conformal,Radiotherapies, Three-Dimensional Conformal,Radiotherapy, 3-D Conformal,Radiotherapy, Three-Dimensional Conformal,Three Dimensional Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapies

Related Publications

D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
August 2003, Physics in medicine and biology,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
January 2018, Journal of medical physics,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
September 2002, Physics in medicine and biology,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
May 2003, Physics in medicine and biology,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
January 2010, Zeitschrift fur medizinische Physik,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
August 2011, Medical physics,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
November 1965, Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
January 1988, Medical physics,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
May 1973, Strahlentherapie,
D Sheikh-Bagheri, and D W Rogers, and C K Ross, and J P Seuntjens
April 2004, Medical physics,
Copied contents to your clipboard!