Mechanisms involved in the immunotoxicity induced by dermal application of JP-8 jet fuel. 2000

S E Ullrich, and H J Lyons
Department of Immunology-178, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA. sullrich@notes.mdacc.tmc.edu

Dermal application of JP-8 jet fuel induces immune suppression. Classic delayed-type hypersensitivity as well as the induction of contact hypersensitivity to allergens applied to the shaved skin of JP-8-treated mice is suppressed. In addition, the ability of T cells isolated from JP-8-treated mice to proliferate in vitro is suppressed. Here we focused on further characterizing the immunotoxicity induced by JP-8 exposure and determining the mechanism involved. Suppression of T-cell proliferation was first noted 3 to 4 days after a single JP-8 treatment and lasted for approximately 3 weeks, at which time T-cell proliferation returned to normal. Cellular immune reactions appear to be more susceptible to the immunosuppressive effects of JP-8, as antibody production in JP-8-treated mice was identical to that found in normal controls. The mechanism through which dermal application of JP-8 suppresses cell-mediated immune reactions appears to be via the release of immune biological-response modifiers. Blocking the production of prostaglandin E(2) with a selective cyclooxygenase-2 inhibitor abrogated JP-8-induced immune suppression. Neutralizing the activity of interleukin-10 with a highly specific monoclonal antibody also blocked JP-8-induced immune suppression. Furthermore, injecting JP-8-treated mice with recombinant interleukin-12, a cytokine that drives cell-mediated immune reactions in vivo, overcame the immunotoxic effects of JP-8 and restored immune function. These data indicate that immune suppressive cytokines, presumably produced by JP-8-treated epidermal cells, are responsible for immune suppression in JP-8-treated mice and that blocking and/or neutralizing their production in vivo overcomes the immunotoxic effects of JP-8.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007648 Kerosene A refined petroleum fraction used as a fuel as well as a solvent. Kerosine
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005260 Female Females
D006838 Hydrocarbons Organic compounds that primarily contain carbon and hydrogen atoms with the carbon atoms forming a linear or circular structure. Hydrocarbon,Saturated Hydrocarbons,Unsaturated Hydrocarbons,Hydrocarbons, Saturated,Hydrocarbons, Unsaturated
D000279 Administration, Cutaneous The application of suitable drug dosage forms to the skin for either local or systemic effects. Cutaneous Drug Administration,Dermal Drug Administration,Drug Administration, Dermal,Percutaneous Administration,Skin Drug Administration,Transcutaneous Administration,Transdermal Administration,Administration, Dermal,Administration, Transcutaneous,Administration, Transdermal,Cutaneous Administration,Cutaneous Administration, Drug,Dermal Administration,Drug Administration, Cutaneous,Skin Administration, Drug,Administration, Cutaneous Drug,Administration, Dermal Drug,Administration, Percutaneous,Administrations, Cutaneous,Administrations, Cutaneous Drug,Administrations, Dermal,Administrations, Dermal Drug,Administrations, Percutaneous,Administrations, Transcutaneous,Administrations, Transdermal,Cutaneous Administrations,Cutaneous Administrations, Drug,Cutaneous Drug Administrations,Dermal Administrations,Dermal Drug Administrations,Drug Administrations, Cutaneous,Drug Administrations, Dermal,Drug Skin Administrations,Percutaneous Administrations,Skin Administrations, Drug,Skin Drug Administrations,Transcutaneous Administrations,Transdermal Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

S E Ullrich, and H J Lyons
November 1999, Toxicological sciences : an official journal of the Society of Toxicology,
S E Ullrich, and H J Lyons
September 2000, Toxicology and industrial health,
S E Ullrich, and H J Lyons
January 1997, Toxicology and industrial health,
S E Ullrich, and H J Lyons
November 2009, Toxicological sciences : an official journal of the Society of Toxicology,
S E Ullrich, and H J Lyons
January 1997, Toxicology and industrial health,
S E Ullrich, and H J Lyons
October 2005, The Annals of occupational hygiene,
S E Ullrich, and H J Lyons
March 2002, Toxicology and industrial health,
S E Ullrich, and H J Lyons
September 2000, Toxicology and industrial health,
S E Ullrich, and H J Lyons
April 2004, Environmental toxicology and pharmacology,
S E Ullrich, and H J Lyons
September 2001, Toxicology and applied pharmacology,
Copied contents to your clipboard!