Role of Ca2+ stores in metabotropic L-glutamate receptor-mediated supralinear Ca2+ signaling in rat hippocampal neurons. 2000

M G Rae, and D J Martin, and G L Collingridge, and A J Irving
Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom.

The role of metabotropic l-glutamate (mGlu) receptors in supralinear Ca(2+) signaling was investigated in cultured hippocampal cells using Ca(2+) imaging techniques and whole-cell voltage-clamp recording. In neurons, but not glia, global supralinear Ca(2+) release from intracellular stores was observed when the mGlu receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) was combined with elevated extracellular K(+) levels (10.8 mm), moderate depolarization (15-30 mV), or NMDA (3 micrometer). There was a delay (2-8 min) before the stores were fully charged, and the enhancement persisted for a short period (up to 10 min) after removal of the store-loading stimulus. Studies with the mGlu receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine demonstrated that these effects were mediated by activation of the mGlu(5) receptor subtype. The L-type voltage-gated Ca(2+) channel antagonist nifedipine (10 micrometer) substantially reduced responses to DHPG obtained in the presence of elevated extracellular K(+) but not NMDA. This suggests that the Ca(2+) that is required to load the stores can enter either through L-type voltage-gated Ca(2+) channels or directly through NMDA receptors. The findings that both depolarization and NMDA receptor activation can facilitate mGlu receptor Ca(2+) signaling adds considerable flexibility to the processes that underlie activity-dependent changes in synaptic strength. In particular, a temporal separation between the store-loading stimulus and the activation of mGlu receptors could be used as a recency detector in neurons.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D012118 Resorcinols A water-soluble crystalline benzene-1,3-diol (resorcinol) and its derivatives. m-Dihydroxybenzenes,meta-Dihydroxybenzenes,m Dihydroxybenzenes,meta Dihydroxybenzenes
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular

Related Publications

M G Rae, and D J Martin, and G L Collingridge, and A J Irving
March 2012, Wiley interdisciplinary reviews. Membrane transport and signaling,
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
July 1995, The Journal of physiology,
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
September 1999, Neuropharmacology,
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
June 2013, Neuroreport,
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
September 1994, European journal of pharmacology,
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
August 2003, Journal of neurophysiology,
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
January 2010, Advances in pharmacology (San Diego, Calif.),
M G Rae, and D J Martin, and G L Collingridge, and A J Irving
August 1995, The Journal of physiology,
Copied contents to your clipboard!