Metabolic effects of 1-methyl-4-phenylpyridinium (MPP(+)) in primary neuron cultures. 2000

A M Marini, and T S Nowak
Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA. amarini@usuhs.mil

Disruption of mitochondrial function has been proposed as an action of 1-methyl-4-phenylpyridinium (MPP(+)) that is responsible for its toxicity. In order to characterize effects of MPP(+) on energy metabolism in primary culture neurons, we monitored levels of several metabolites in cultured rat cerebellar granule cells exposed to MPP(+). The toxin produced a rapid concentration-dependent reduction in intracellular phosphocreatine (PCr), amounting to a 50-80% decrease within 30-60 min at 50 microM, that was maintained through the 1 week exposure interval examined. In contrast, ATP levels remained comparable to those of untreated neurons for approximately 4 days, at that time a 50% reduction in ATP was observed in association with a decrease in cell viability. Acute decreases in PCr were accompanied by increases in creatine such that the total creatine levels were maintained. Lactate levels in the culture medium were significantly increased (from 4.5 to 6.0 mM) within 6 hr after addition of MPP(+), with a concentration dependence similar to that observed for the reduction in PCr. Increased lactate production in the presence of MPP(+) coincided with a more rapid depletion of glucose in the culture medium. MPP(+) induced a rapid and sustained decrease in intracellular pH calculated from the creatine kinase equilibrium, and this acidification is considered primarily responsible for the observed decrease in PCr. These studies provide direct evidence that toxic concentrations of MPP(+) have acute effects on energy metabolism in primary culture neurons, consistent with an increased dependence on glycolysis to meet metabolic demand, but indicate that toxicity is not associated with overt, immediate failure to maintain cellular ATP.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006540 Herbicides Pesticides used to destroy unwanted vegetation, especially various types of weeds, grasses (POACEAE), and woody plants. Some plants develop HERBICIDE RESISTANCE. Algaecide,Algicide,Herbicide,Algaecides,Algicides
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015655 1-Methyl-4-phenylpyridinium An active neurotoxic metabolite of 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE. The compound reduces dopamine levels, inhibits the biosynthesis of catecholamines, depletes cardiac norepinephrine and inactivates tyrosine hydroxylase. These and other toxic effects lead to cessation of oxidative phosphorylation, ATP depletion, and cell death. The compound, which is related to PARAQUAT, has also been used as an herbicide. Cyperquat,1-Methyl-4-phenylpyridine,1-Methyl-4-phenylpyridinium Chloride,1-Methyl-4-phenylpyridinium Ion,N-Methyl-4-phenylpyridine,N-Methyl-4-phenylpyridinium,1 Methyl 4 phenylpyridine,1 Methyl 4 phenylpyridinium,1 Methyl 4 phenylpyridinium Chloride,1 Methyl 4 phenylpyridinium Ion,N Methyl 4 phenylpyridine
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A M Marini, and T S Nowak
January 1997, Journal of neural transmission (Vienna, Austria : 1996),
A M Marini, and T S Nowak
October 1990, Toxicology letters,
A M Marini, and T S Nowak
March 2015, The Journal of biological chemistry,
A M Marini, and T S Nowak
February 2009, Journal of molecular neuroscience : MN,
A M Marini, and T S Nowak
December 2012, Proteome science,
A M Marini, and T S Nowak
June 1996, European journal of pharmacology,
A M Marini, and T S Nowak
January 1996, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!