Apical endocytosis in rat hepatocytes In situ involves clathrin, traverses a subapical compartment, and leads to lysosomes. 2000

C Rahner, and B Stieger, and L Landmann
Department of Anatomy, University of Basel, Basel, Switzerland.

OBJECTIVE This study demonstrates and characterizes apical (canalicular) endocytic pathways in hepatocytes in situ. METHODS Endocytic markers were administered by retrograde infusion through the common bile duct. Colocalization with proteins that are specific for various endocytic compartments was performed on stacks of deconvoluted confocal immunofluorescence images. The subcellular distribution of marker proteins was assessed by electron microscopy (EM). RESULTS Bulk-phase, as well as membrane-associated markers, were internalized readily at the apical cell pole. At the EM level, marker was found initially in 60-100-nm tubulovesicular structures and 150-200-nm cup-shaped vesicles, whereas multivesicular bodies and lysosomes became labeled after longer time intervals. Apical endocytosis involved clathrin and delivered marker to late endosomes (rab7(+), cathepsin D(+)), as well as lysosomes (rab7(-), cathepsin D(+)). Simultaneous labeling of the basolateral endocytic route resulted in overlap of both pathways in the late endosomal and lysosomal compartments. In addition, apical endocytosis involved a subapical compartment (endolyn-78(+), rab11(+), polymeric IgA receptor [pIgA-R(+)]) that is passed by the transcytotic route, thus constituting a crossroads. pIgA-R immunoreactivity, probably reflecting the cleaved receptor fragment, was associated with apical endocytic marker and colocalized with clathrin and later with cathepsin D. CONCLUSIONS Apical endocytosis involves coated pits/vesicles, leads to a subapical compartment, and plays a role in the retrieval of canalicular plasma membrane components for lysosomal degradation.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C Rahner, and B Stieger, and L Landmann
April 1998, The Journal of cell biology,
C Rahner, and B Stieger, and L Landmann
January 2004, Molecular biology of the cell,
C Rahner, and B Stieger, and L Landmann
January 2013, PloS one,
C Rahner, and B Stieger, and L Landmann
January 1998, Journal of cell science,
C Rahner, and B Stieger, and L Landmann
March 2001, Journal of neuroendocrinology,
C Rahner, and B Stieger, and L Landmann
December 2000, Gastroenterology,
C Rahner, and B Stieger, and L Landmann
March 2009, The Journal of cell biology,
Copied contents to your clipboard!