Regional cerebral cortical activation in monoamine oxidase A-deficient mice: differential effects of chronic versus acute elevations in serotonin and norepinephrine. 2000

D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
Department of Psychiatry and the Behavioral Sciences, LAC-USC School of Medicine, 1200 North State St., CA 90033, Los Angeles, USA. holschne@hsc.usc.edu

Mice deficient in monoamine oxidase A have previously been shown to demonstrate a chronic elevation of serotonin and norepinephrine in the brain. Using the autoradiographic [14C]iodo-antipyrine method, we examined cerebral cortical blood flow in conscious, restrained four- to five-month-old knock-out and wild-type animals following the intraperitoneal administration of either saline or D-fenfluramine. Knock-out animals administered saline, compared to their wild-type counterparts, demonstrated a significantly higher regional cortical blood flow in somatosensory and barrel field neocortex, an area which previous histological studies have shown to be characterized by abnormal serotonergic projection fibers and absent barrel formation. Regional cortical blood flow was significantly lower in knock-out than in wild-type mice in the entorhinal and midline motor cortex, with non-significant decreases noted in the olfactory, piriform and retrosplenial cortices and the amygdala. We compared the above findings to those obtained in response to D-fenfluramine which, in conjunction with its metabolite D-norfenfluramine, results in acute elevations of brain levels of serotonin and norepinephrine. Administration of D-fenfluramine (21. 2mg/kg) resulted in changes in regional cortical perfusion in most brain regions of both knock-out and wild-type mice that were opposite to the genotypic differences seen in perfusion in response to saline. Fenfluramine significantly increased regional cortical blood flow in the allocortex (olfactory, piriform, entorhinal) and the amygdala, and significantly decreased regional cortical blood flow in the somatosensory, barrel field, midline motor and retrosplenial cortices. Changes in regional perfusion in response to fenfluramine were topographically equivalent in knock-out and wild-type mice, although in knock-out mice such changes were of greater magnitude. Our study suggests that the effects on regional cortical blood flow of a lifelong absence of monoamine oxidase A, and the consequent chronic increase in serotonin and norepinephrine, differ from those attributable to acute increases in these neurotransmitters following fenfluramine administration. Such a differential response may reflect neurodevelopmental abnormalities and/or effects of a chronic physiological adaptation on the regulation of cortical activation.

UI MeSH Term Description Entries
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009468 Neuromuscular Diseases A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA. Amyotonia Congenita,Oppenheim Disease,Cramp-Fasciculation Syndrome,Fasciculation-Cramp Syndrome, Benign,Foley-Denny-Brown Syndrome,Oppenheim's Disease,Benign Fasciculation-Cramp Syndrome,Benign Fasciculation-Cramp Syndromes,Cramp Fasciculation Syndrome,Cramp-Fasciculation Syndromes,Fasciculation Cramp Syndrome, Benign,Fasciculation-Cramp Syndromes, Benign,Foley Denny Brown Syndrome,Neuromuscular Disease,Oppenheims Disease,Syndrome, Cramp-Fasciculation,Syndrome, Foley-Denny-Brown,Syndromes, Cramp-Fasciculation
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D005277 Fenfluramine A centrally active drug that apparently both blocks serotonin uptake and provokes transport-mediated serotonin release. Fintepla,Fenfluramine Hydrochloride,Fenfluramine Hydrochloride, (+-)-Isomer,Fenfluramine Hydrochloride, R-Isomer,Fenfluramine, (+-)-Isomer,Fenfluramine, R-Isomer,Isomeride,Pondimin,Fenfluramine Hydrochloride, R Isomer,Fenfluramine, R Isomer,Hydrochloride, Fenfluramine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
May 1982, Brain research,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
December 2000, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
November 2001, Journal of neuroscience research,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
July 1963, Annals of the New York Academy of Sciences,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
November 2018, Journal of neural transmission (Vienna, Austria : 1996),
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
October 2011, The international journal of neuropsychopharmacology,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
December 1982, Biochemical pharmacology,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
May 1998, Brain research. Developmental brain research,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
February 1980, The Journal of pharmacology and experimental therapeutics,
D P Holschneider, and O U Scremin, and L Huynh, and K Chen, and I Seif, and J C Shih
August 1974, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!