Serotonin-mediated striatal dopamine release involves the dopamine uptake site and the serotonin receptor. 2000

H Sershen, and A Hashim, and A Lajtha
The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA. sershen@nki.rfmh.org

Modulation of striatal dopamine (DA) release by serotonin (5HT) and its antagonists was studied utilizing in vitro perfusion techniques. In isolated striatal tissue, 5HT (10 microM) increased the fractional basal release of labeled DA. The 5HT(2/1c) antagonist ketanserin (5 microM) also stimulated the basal release. These two effects were mediated by different mechanisms as cocaine (10 microM) greatly inhibited the 5HT-mediated response, but slightly increased the ketanserin-mediated response. 6-Nitroquipazine maleate (10 microM, 5HT uptake inhibitor) partially inhibited both responses. Inhibition by GBR 12909 (DA uptake inhibitor) at 1 microM of the 5HT-mediated DA release was similar to that of cocaine, but at 10 microM it increased release before addition of 5HT, and maintained elevated DA release while present in the incubation medium. At 1 microM GBR 12909, ketanserin-mediated DA release was stimulated and a much greater release was seen at 10 microM, but the prolonged release was not observed as after 5HT-mediated release. Among other antagonists methiothepin (5HT(1,2,6) antagonist) also enhanced DA release, whereas oxymetazoline (5HT(1A,1B,1D) agonist) had no effect. RS2359-190 (5HT(4) antagonist) had a small effect (slight stimulation) on 5HT-mediated DA release, and no effect on ketanserin-mediated DA release. CGS 12066A (5HT(1B) agonist) inhibited 5HT-mediated DA release. The glutamate antagonist MK-801 and the GABA(A) antagonist bicuculline had no affect on either response. These results indicate that 5HT-mediated DA release occurs via reversal of the DA transporter and that inhibitory presynaptic 5HT heteroreceptors and both inhibitory and stimulatory somato-dendritic 5HT receptors regulate release. In addition to the reversal of the transporter, an inhibitory 5HT(2) component was identified.

UI MeSH Term Description Entries
D007650 Ketanserin A selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is particularly effective in older patients. 3-(2-(4-(4-Fluorobenzoyl)piperidinol)ethyl)-2,4(1H,3H)-quinazolinedione,R-41,468,R-41468,R 41,468,R 41468,R41,468,R41468
D008297 Male Males
D008719 Methiothepin A serotonin receptor antagonist in the CENTRAL NERVOUS SYSTEM used as an antipsychotic. Metitepine,Methiothepin Maleate,Methiothepine,Maleate, Methiothepin
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010109 Oxymetazoline A direct acting sympathomimetic used as a vasoconstrictor to relieve nasal congestion. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1251) Oxymetazoline Hydrochloride,Hydrochloride, Oxymetazoline
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011810 Quinoxalines Quinoxaline
D011814 Quipazine A pharmacologic congener of serotonin that contracts smooth muscle and has actions similar to those of tricyclic antidepressants. It has been proposed as an oxytocic. 2-(1-Piperazinyl)quinoline,MA-1291,Quipazine Hydrochloride,Quipazine Maleate,Quipazine Maleate (1:1),MA 1291,MA1291
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine

Related Publications

H Sershen, and A Hashim, and A Lajtha
August 2000, Journal of neurochemistry,
H Sershen, and A Hashim, and A Lajtha
July 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Sershen, and A Hashim, and A Lajtha
August 2016, Basal ganglia,
H Sershen, and A Hashim, and A Lajtha
October 1999, European journal of pharmacology,
H Sershen, and A Hashim, and A Lajtha
January 1996, Journal of neurochemistry,
H Sershen, and A Hashim, and A Lajtha
September 1994, The Journal of pharmacology and experimental therapeutics,
H Sershen, and A Hashim, and A Lajtha
March 2008, Metabolic brain disease,
H Sershen, and A Hashim, and A Lajtha
April 2022, ACS chemical neuroscience,
H Sershen, and A Hashim, and A Lajtha
October 1986, Neuroscience letters,
Copied contents to your clipboard!