Effect of angiotensin II non-peptide AT(1) antagonist losartan on phosphatidylethanolamine membranes. 2000

E Theodoropoulou, and D Marsh
Abteilung Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077, Göttingen, Germany. etheodo@gwdg.de

Losartan was found to affect both the thermotropic behavior and molecular mobility of dimyristoyl- and dipalmitoyl-phosphatidylcholine membranes (Theodoropoulou and Marsh, Biochim. Biophys. Acta 1461 (1999) 135-146). At low concentrations, the antagonist is located close to the interfacial region of the phosphatidylcholine bilayer while at high mole fractions it inserts deeper in the bilayers. In the present study, we investigated the interactions of losartan with phosphatidylethanolamine membranes using differential scanning calorimetry (DSC), electron spin resonance (ESR) and 31P nuclear magnetic resonance (NMR) spectroscopy. DSC showed that the antagonist affected the thermotropic transitions of dimyristoyl-, dipalmitoyl- and dielaidoyl-phosphatidylethanolamine membranes (DMPE, DPPE and DEPE, respectively). ESR spectroscopy showed that the interaction of losartan with phosphatidylethanolamine membranes is more superficial than in the case of phosphatidylcholine bilayers. Additionally, losartan increased the spin-spin broadening of 12-PESL spin labels in the gel phase of DMPE and DPPE membranes, while in the case of DEPE membranes the opposite effect was observed. (31)P-NMR showed that the antagonist stabilizes the fluid lamellar phase of DEPE membranes relative to the hexagonal H(II) phase. Our results show that losartan affects the thermotropic behavior of phosphatidylethanolamine membranes, while the molecular mobility of the membranes is not affected greatly. Furthermore, its interactions with phosphatidylethanolamine membranes are more superficial than with phosphatidylcholine bilayers.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D057911 Angiotensin Receptor Antagonists Agents that antagonize ANGIOTENSIN RECEPTORS. Many drugs in this class specifically target the ANGIOTENSIN TYPE 1 RECEPTOR. Angiotensin II Receptor Antagonist,Angiotensin II Receptor Blocker,Angiotensin Receptor Antagonist,Angiotensin Receptor Blocker,Angiotensin II Receptor Antagonists,Angiotensin II Receptor Blockers,Angiotensin Receptor Blockers,Antagonist, Angiotensin Receptor,Antagonists, Angiotensin Receptor,Blocker, Angiotensin Receptor,Receptor Antagonist, Angiotensin,Receptor Antagonists, Angiotensin,Receptor Blocker, Angiotensin,Receptor Blockers, Angiotensin
D019808 Losartan An antagonist of ANGIOTENSIN TYPE 1 RECEPTOR with antihypertensive activity due to the reduced pressor effect of ANGIOTENSIN II. 2-Butyl-4-chloro-1-((2'-(1H-etrazol-5-yl) (1,1'-biphenyl)-4-yl)methyl)-1H-imidazole-5-methanol,Cozaar,DuP-753,Losartan Monopotassium Salt,Losartan Potassium,MK-954,MK954,DuP 753,DuP753,MK 954,Monopotassium Salt, Losartan,Potassium, Losartan,Salt, Losartan Monopotassium

Related Publications

E Theodoropoulou, and D Marsh
April 1993, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
E Theodoropoulou, and D Marsh
January 1999, Wiadomosci lekarskie (Warsaw, Poland : 1960),
E Theodoropoulou, and D Marsh
January 2002, Hepato-gastroenterology,
E Theodoropoulou, and D Marsh
August 2013, Research in cardiovascular medicine,
E Theodoropoulou, and D Marsh
January 2001, Kidney & blood pressure research,
E Theodoropoulou, and D Marsh
February 2000, Nihon rinsho. Japanese journal of clinical medicine,
E Theodoropoulou, and D Marsh
February 1999, Hepatology (Baltimore, Md.),
E Theodoropoulou, and D Marsh
February 2016, International journal of molecular sciences,
Copied contents to your clipboard!