The structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine codispersed with a branched-chain phosphatidylcholine. 2000

K Semmler, and H W Meyer, and P J Quinn
King's College London, Division of Life Sciences, UK.

The structure and thermotropic phase behaviour of a fully hydrated binary mixture of dipalmitoylphosphatidylcholine and a branched-chain phosphatidylcholine, 1, 2-di(4-dodecyl-palmitoyl)-sn-glycero-3-phosphocholine, were examined using differential scanning calorimetry, synchrotron X-ray diffraction and freeze-fracture electron microscopy. The branched-chain lipid forms a nonlamellar phase when dispersed alone in aqueous medium. Mixed aqueous dispersions of the two phospholipids containing less than 33 mol% of the branched-chain lipid form lamellar phases over the whole temperature range were studied (4 degrees C to 60 degrees C). When present in proportions greater than 33 mol% it induces a hexagonal phase in mixed aqueous dispersions with dipalmitoylphosphatidylcholine at temperatures above the fluid phase transition. At temperatures below 35 degrees C a hexagonal phase coexists with a gel bilayer phase. The lamellar<-->nonlamellar transition can be explained satisfactorily on the basis of the shape of the molecule expressed in terms of headgroup and chain cross-sectional areas. At temperatures below 35 degrees C macroscopic phase separation of two gel phases takes place. Freeze-fracture electron microscopy revealed that one gel phase consists of bilayers with a highly regular, periodic superstructure (macro-ripples) whereas the other phase forms flat, planar bilayers. The macro-ripple phase appears to represent a relaxation structure required to adapt to the packing constraints imposed by the incorporation of the branched-chain lipid into the dipalmitoylphosphatidylcholine host bilayer. The data suggest that structural changes that take place on cooling the mixed dispersion below the lamellar<-->nonlamellar phase transition temperature cannot be adequately described using the molecular form concept. Instead it is necessary to take into account the detailed molecular form of the guest lipid as well as its physical properties.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010742 Phospholipid Ethers Phospholipids which have an alcohol moiety in ethereal linkage with a saturated or unsaturated aliphatic alcohol. They are usually derivatives of phosphoglycerols or phosphatidates. The other two alcohol groups of the glycerol backbone are usually in ester linkage. These compounds are widely distributed in animal tissues. Ether Phosphatidates,Ether Phospholipids,Glycerol Phosphate Ethers,Glycerophosphate Ethers,1-Alkyl-2-Acylphosphatidates,1 Alkyl 2 Acylphosphatidates,Ethers, Glycerol Phosphate,Ethers, Glycerophosphate,Ethers, Phospholipid,Phosphate Ethers, Glycerol,Phosphatidates, Ether,Phospholipids, Ether
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

K Semmler, and H W Meyer, and P J Quinn
August 2005, Physical chemistry chemical physics : PCCP,
K Semmler, and H W Meyer, and P J Quinn
January 2000, Zeitschrift fur Naturforschung. C, Journal of biosciences,
K Semmler, and H W Meyer, and P J Quinn
July 2018, Langmuir : the ACS journal of surfaces and colloids,
K Semmler, and H W Meyer, and P J Quinn
January 1990, Chemistry and physics of lipids,
K Semmler, and H W Meyer, and P J Quinn
January 2013, International journal of molecular sciences,
K Semmler, and H W Meyer, and P J Quinn
January 2000, Zeitschrift fur Naturforschung. C, Journal of biosciences,
Copied contents to your clipboard!