Antibody repertoire development in fetal and neonatal piglets. II. Characterization of heavy chain complementarity-determining region 3 diversity in the developing fetus. 2000

J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
Department of Microbiology and Iowa Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA. Jebutler@blue.weeg.uiowa.edu

Since the actual combinatorial diversity in the V(H) repertoire in fetal piglets represents <1% of the potential in mice and humans, we wondered whether 1) complementarity-determining region 3 (CDR3) diversity was also restricted; 2) CDR3 diversity changed with fetal age; and 3) to what extent CDR3 contributed to the preimmune VDJ repertoire. CDR3 spectratyping and sequence analyses of 213 CDR3s recovered from >30 fetal animals of different ages showed that >95% of VDJ diversity resulted from junctional diversity. Unlike sheep and cattle, somatic hypermutation does not contribute to the repertoire. These studies also revealed that 1) N region additions are as extensive in VDJ rearrangements recovered at 30 days as those in late term fetuses, suggesting that TdT is fully active at the onset of VDJ rearrangement; 2) nearly 90% of all rearrangement are in-frame until late gestation; 3) the oligoclonal CDR3 spectratype of 30-day fetal liver becomes polyclonal by 50 days, while this change occurs much later in spleen; 4) there is little evidence of individual variation in CDR3 spectratype or differences in spectratype among lymphoid tissues with the exception of the thymus; and 4) there is a tendency for usage of the most J(H) proximal D(H) segment (D(H)B) to decrease in older fetuses and for the longer D(H) segment to be trimmed to the same length as the shorter D(H) when used in CDR3. These findings suggest that in the fetal piglet, highly restricted combinatorial diversity and the lack of somatic mutation are compensated by early onset of TdT activity and other mechanisms that contribute to CDR3 junctional diversity.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008221 Lymphoid Tissue Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS. Lymphatic Tissue,Lymphatic Tissues,Lymphoid Tissues,Tissue, Lymphatic,Tissue, Lymphoid,Tissues, Lymphatic,Tissues, Lymphoid
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
January 2004, Journal of molecular recognition : JMR,
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
April 2005, Journal of molecular biology,
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
April 2010, Journal of immunology (Baltimore, Md. : 1950),
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
November 2017, Scandinavian journal of immunology,
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
December 2004, Journal of immunology (Baltimore, Md. : 1950),
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
July 2016, Science immunology,
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
November 1999, Biochemistry,
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
May 2002, Journal of immunology (Baltimore, Md. : 1950),
J E Butler, and P Weber, and M Sinkora, and J Sun, and S J Ford, and R K Christenson
February 1996, Gene,
Copied contents to your clipboard!