A population approach to cortical dynamics with an application to orientation tuning. 2000

A Omurtag, and E Kaplan, and B Knight, and L Sirovich
Laboratory of Applied Mathematics, Mount Sinai School of Medicine, New York, NY 10029, USA. ahmet@camelot.mssm.edu

A typical functional region in cortex contains thousands of neurons, therefore direct neuronal simulation of the dynamics of such a region necessarily involves massive computation. A recent efficient alternative formulation is in terms of kinetic equations that describe the collective activity of the whole population of similar neurons. A previous paper has shown that these equations produce results that agree well with detailed direct simulations. Here we illustrate the power of this new technique by applying it to the investigation of the effect of recurrent connections upon the dynamics of orientation tuning in the visual cortex. Our equations express the kinetic counterpart of the hypercolumn model from which Somers et al (Somers D, Nelson S and Sur M 1995 J. Neurosci. 15 5448-65) computed steady-state cortical responses to static stimuli by direct simulation. We confirm their static results. Our method presents the opportunity to simulate the data-intensive dynamical experiments of Ringach et al (Ringach D, Hawken M and Shapley R 1997 Nature 387 281-4), in which 60 randomly oriented stimuli were presented each second for 15 min, to gather adequate statistics of responses to multiple presentations. Without readjustment of the previously defined parameters. our simulations yield substantial agreement with the experimental results. Our calculations suggest that differences in the experimental dynamical responses of cells in different cortical layers originate from differences in their recurrent connections with other cells. Thus our method of efficient simulation furnishes a variety of information that is not available from experiment alone.

UI MeSH Term Description Entries
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011157 Population Dynamics The pattern of any process, or the interrelationship of phenomena, which affects growth or change within a population. Malthusianism,Neomalthusianism,Demographic Aging,Demographic Transition,Optimum Population,Population Decrease,Population Pressure,Population Replacement,Population Theory,Residential Mobility,Rural-Urban Migration,Stable Population,Stationary Population,Aging, Demographic,Decrease, Population,Decreases, Population,Demographic Transitions,Dynamics, Population,Migration, Rural-Urban,Migrations, Rural-Urban,Mobilities, Residential,Mobility, Residential,Optimum Populations,Population Decreases,Population Pressures,Population Replacements,Population Theories,Population, Optimum,Population, Stable,Population, Stationary,Populations, Optimum,Populations, Stable,Populations, Stationary,Pressure, Population,Pressures, Population,Replacement, Population,Replacements, Population,Residential Mobilities,Rural Urban Migration,Rural-Urban Migrations,Stable Populations,Stationary Populations,Theories, Population,Theory, Population,Transition, Demographic,Transitions, Demographic
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Omurtag, and E Kaplan, and B Knight, and L Sirovich
January 2000, Journal of computational neuroscience,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
January 1990, Journal of the Optical Society of America. A, Optics and image science,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
January 1999, Biofizika,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
November 2000, Neural computation,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
December 2002, Neuron,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
May 1997, Nature,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
February 2002, Proceedings of the National Academy of Sciences of the United States of America,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
October 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
January 1978, Die Dritte Welt,
A Omurtag, and E Kaplan, and B Knight, and L Sirovich
November 1976, Journal of mathematical biology,
Copied contents to your clipboard!