Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. 2000

B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, California 92350, USA.

Our previous studies have shown that vaccinia virus (VV) expressing p53, interleukin-2 (IL-2), and interleukin-12 (IL-12) results in an effective inhibition of subcutaneous glioma growth in mice. We propose that combination therapy of tumors with virus-mediated p53 and cytokine genes offers the prospect of synergistic antitumor response. In this work, the antitumor efficacy of VV-mediated combination of p53, IL-2, and IL-12 genes was evaluated in a nude mouse model. To minimize cytokine-associated toxicity, a virus dose as low as 10 plaque-forming units of VV expressing IL-2 and IL-12 per animal was used alone and together with 2 x 10(7) plaque-forming units of VV expressing p53. Intratumoral treatment of established C6 glioma with recombinant viruses rVV-p53, rVV-mIL2, rVV-mIL12, and rVV-2-12 induced the prolonged expression of p53, IL-2, IL-12, and both cytokines simultaneously. The combination of rVV-p53/rVV-mIL 2 or rVV-p53/rVV-2-12 resulted in significant tumor inhibition compared to single modality treatment (P<.05). rVV-p53/rVV-2-12 therapy was associated with significant elevation of natural killer, Mac-1+, and NKT cells in blood and interferon-gamma, and tumor necrosis factor-alpha expression in tumors. The difference in the inhibition of tumor growth between the rVV-p53/rVV-mIL2 combination and rVV-p53 was statistically insignificant. These data demonstrate that gene therapy based on VV-mediated combination of p53, IL-2, and IL-12 treatment may be a promising adjunctive strategy for glioma treatment.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
February 2005, The Journal of urology,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
March 1999, Journal of immunotherapy (Hagerstown, Md. : 1997),
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
April 1997, International journal of oncology,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
March 2020, Journal for immunotherapy of cancer,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
April 2014, Archivum immunologiae et therapiae experimentalis,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
March 2024, Molecular therapy. Oncology,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
August 2009, International journal of cancer,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
December 2001, Molecular therapy : the journal of the American Society of Gene Therapy,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
April 2021, Journal of translational medicine,
B Chen, and T M Timiryasova, and M L Andres, and E H Kajioka, and R Dutta-Roy, and D S Gridley, and I Fodor
January 1999, Cancer gene therapy,
Copied contents to your clipboard!