Gene therapy: recombinant adeno-associated virus vectors. 2001

J R Smith-Arica, and J S Bartlett
Children's Research Institute, W531, 700 Children's Drive, Columbus, OH, 43205-2696, USA. SmithJ@pediatrics.ohio-state.edu

Gene transfer using recombinant adeno-associated virus (rAAV) vectors shows great promise for human gene therapy. The broad host range, low level of immune response, and longevity of gene expression observed with these vectors in numerous disease paradigms has enabled the initiation of a number of clinical trials using this gene delivery system. This review presents an overview of the current developments in the field of AAV-mediated gene delivery. Such developments include the establishment of new production methods allowing the generation of high titer preparations, improved purification methods, the use of alternative AAV serotypes, and the generation of trans-splicing rAAV genomes. Together, these developments have improved results interpretation, host range, and the coding capacity of rAAV vectors. Furthermore, the recent identification of regions within the viral capsid that are amenable to modification has begun to address the issue of direct rAAV vector targeting, which could potentially allow targeted gene delivery to specific cell populations. The versatility shown by this vector has enabled new diseases to be realistically considered for therapeutic intervention and considerably broadened the scope of gene therapy.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D010322 Parvoviridae Infections Virus infections caused by the PARVOVIRIDAE. Parvovirus Infections,Infections, Parvoviridae,Infections, Parvovirus,Infection, Parvoviridae,Infection, Parvovirus,Parvoviridae Infection,Parvovirus Infection
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000229 Dependovirus A genus of the family PARVOVIRIDAE, subfamily PARVOVIRINAE, which are dependent on a coinfection with helper adenoviruses or herpesviruses for their efficient replication. The type species is Adeno-associated virus 2. Adeno-Associated Viruses,Dependoparvovirus,Adeno-Associated Virus,Virus, Adeno-Associated,Viruses, Adeno-Associated,Adeno Associated Virus,Adeno Associated Viruses,Dependoparvoviruses,Dependoviruses,Virus, Adeno Associated,Viruses, Adeno Associated
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D016679 Genome, Viral The complete genetic complement contained in a DNA or RNA molecule in a virus. Viral Genome,Genomes, Viral,Viral Genomes
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene

Related Publications

J R Smith-Arica, and J S Bartlett
July 2004, Expert opinion on biological therapy,
J R Smith-Arica, and J S Bartlett
June 2008, Gene therapy,
J R Smith-Arica, and J S Bartlett
July 2011, Archives of oral biology,
J R Smith-Arica, and J S Bartlett
October 2001, Current opinion in molecular therapeutics,
J R Smith-Arica, and J S Bartlett
December 2002, Current gene therapy,
J R Smith-Arica, and J S Bartlett
September 1998, IDrugs : the investigational drugs journal,
J R Smith-Arica, and J S Bartlett
October 2008, Clinical microbiology reviews,
J R Smith-Arica, and J S Bartlett
August 1995, Gene therapy,
J R Smith-Arica, and J S Bartlett
December 1997, Uirusu,
Copied contents to your clipboard!