Testis transplantation in male rainbow trout (Oncorhynchus mykiss). 2001

J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3051, USA. jamesn@uidaho.edu

The objective of the present study was to establish a procedure for the transplantation of an intact testis from one male rainbow trout (Oncorhynchus mykiss) to another individual and evaluate the reproductive function of the transplanted testis at sexual maturity. Isogenic (cloned) male rainbow trout were produced by crossing a completely homozygous male (YY) with a homozygous female (XX) to eliminate any problem of tissue rejection. Transplantation was performed on four pairs of sexually immature animals (n = 8); each served both as a donor and recipient. The left testis was removed by making a ventral midline incision to expose the body cavity and gonads. The left testis was disconnected at the anterior and posterior points of attachment and transferred to the recipient fish where it was placed in position adjacent to the pyloric cecae. The right testis was left intact. After 4 wk, the fish were injected (i.p.) twice weekly for 8 or 9 wk with salmon pituitary extract (1.5 mg/kg) to induce precocious sexual maturation. A similar number of untreated fish were maintained as controls. Following this treatment, all the fish were killed, and the right (intact) and left (transplanted) testes were removed, weighed, and sampled for sperm. Although the mean weights of the left, transplanted testes were significantly (P: < 0.05) smaller than the intact testes (transplants = 1.2 g; intact = 3.9 g), transplanted testes were present in all animals, had increased in mass, and were sexually mature containing sperm. The mean fertility, as measured by the proportion of eggs completing first cleavage, of sperm derived from transplanted testes (92%) was no different from the sperm obtained from intact testes (84%). Similarly, there was no difference in the number of embryos attaining the eyed stage of development, after 18 days of incubation, that were derived from transplanted (84%) or intact testes (85%).

UI MeSH Term Description Entries
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D005260 Female Females
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
January 1992, Peptides,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
April 2002, Fish & shellfish immunology,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
April 2000, Fish & shellfish immunology,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
July 2003, Journal of experimental zoology. Part A, Comparative experimental biology,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
April 2006, Ecotoxicology (London, England),
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
February 2013, Journal of fish biology,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
January 2016, Fish & shellfish immunology,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
January 1996, Australian veterinary journal,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
January 2014, PloS one,
J J Nagler, and J G Cloud, and P A Wheeler, and G H Thorgaard
May 1998, The Journal of experimental biology,
Copied contents to your clipboard!