The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids. 2001

H Heerklotz, and R M Epand
Department of Biochemistry, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada. heiko.heerlotz@unibas.ch

The energetics of phospholipid aggregation depend on the apparent water-accessible apolar surface area (ASAap), ordering effects of the chains, and headgroup interactions. We quantify the enthalpy and entropy of these interactions separately. For that purpose, the thermodynamics of micelle formation of lysophosphatidylcholines (LPCs, chains C10, C12, C14, and C16) and diacylphosphatidylcholines (DAPCs, chains C5, C6) and C7) are studied using isothermal titration calorimetry. The critical micelle concentration (CMC) values are 90, 15, and 1.9 mM (C5-C7-DAPC) and 6.8, 0.71, 0.045, and 0.005 mM (LPCs). The group contributions per methylene of DeltaDeltaG(0) = -3.1 kJ/mol and DeltaDeltaC(P) = -57 J/(mol. K) for LPCs agree with literature data on hydrocarbons and amphiphiles. An apparent deviation of DAPCs (-2.5 kJ/mol, 45 J/(mol. K)) is due to an intramolecular interaction between the two chains, burying 20% of the surface. The chain/chain interaction enthalpies in a micelle core are by approximately -2 kJ/(mol) per methylene group more favorable than in bulk hydrocarbons. We conclude that the impact of the chain conformation and packing on the interaction enthalpy is very pronounced. It serves to explain a variety of effects reported on membrane binding. Interactions within the water-accessible region show considerable DeltaH, but almost no DeltaG(0). The heat capacity changes suggest about three methylene groups (ASAap approximately 100 A2) per LPC remain exposed to water in a micelle (DAPC: 2 CH2/70 A2).

UI MeSH Term Description Entries
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical
D019277 Entropy The measure of that part of the heat or energy of a system which is not available to perform work. Entropy increases in all natural (spontaneous and irreversible) processes. (From Dorland, 28th ed) Entropies

Related Publications

H Heerklotz, and R M Epand
January 2007, Physical review. E, Statistical, nonlinear, and soft matter physics,
H Heerklotz, and R M Epand
January 1987, Nature,
H Heerklotz, and R M Epand
January 1979, Journal of molecular biology,
H Heerklotz, and R M Epand
July 2001, Journal of environmental sciences (China),
H Heerklotz, and R M Epand
March 1974, Nature,
H Heerklotz, and R M Epand
July 2015, Journal of biomolecular NMR,
H Heerklotz, and R M Epand
April 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!