Saccharin activates cation conductance via inositol 1,4,5-trisphosphate production in a subset of isolated rod taste cells in the frog. 2001

Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
Department of Physiology, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan. okada@net.nagasaki-u.ac.jp

The transduction mechanism of the conductance activated by saccharin was analysed in isolated bullfrog taste cells under whole-cell voltage-clamp. Bath application of 30 mM saccharin induced an inward current of -34 +/- 12 pA (mean +/- SEM, n = 10) at a membrane potential of -50 mV in 10 (23%) of 44 rod cells. The concentration-response relationship for the saccharin-gated current was consistent with that of the gustatory neural response. The saccharin-induced current was accompanied with a conductance increase under internal low Cl- condition (E(Cl) = -56 mV), suggesting that saccharin activated a cation conductance. The reversal potential of the saccharin-induced current was -17 +/- 2 mV (n = 10). Intracellular dialysis of 0.5 mM guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) completely blocked the saccharin-induced response, suggesting the involvement of a G protein in the transduction. The dialysis of heparin (1 mg/mL) also inhibited the response almost completely, but the dialysis of 1 mM 8-Br-cAMP did not affect the response significantly. Intracellular 50 microM inositol 1,4,5-trisphosphate (1,4,5 InsP(3)) also induced the inward current in five (38%) of 13 rod cells, but intracellular Pasteurella multocida toxin (5 microg/mL, G alpha q-coupled PLC activator) did not elicit any response in the cells. The results suggest that saccharin mainly activates a cation conductance in frog taste cells through the mediation of IP3 production.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005930 Glossopharyngeal Nerve The 9th cranial nerve. The glossopharyngeal nerve is a mixed motor and sensory nerve; it conveys somatic and autonomic efferents as well as general, special, and visceral afferents. Among the connections are motor fibers to the stylopharyngeus muscle, parasympathetic fibers to the parotid glands, general and taste afferents from the posterior third of the tongue, the nasopharynx, and the palate, and afferents from baroreceptors and CHEMORECEPTOR CELLS of the carotid sinus. Cranial Nerve IX,Ninth Cranial Nerve,Cranial Nerve IXs,Cranial Nerve, Ninth,Cranial Nerves, Ninth,Glossopharyngeal Nerves,Nerve, Glossopharyngeal,Nerve, Ninth Cranial,Nerves, Glossopharyngeal,Nerves, Ninth Cranial,Ninth Cranial Nerves
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000925 Anticoagulants Agents that prevent BLOOD CLOTTING. Anticoagulant Agent,Anticoagulant Drug,Anticoagulant,Anticoagulant Agents,Anticoagulant Drugs,Anticoagulation Agents,Indirect Thrombin Inhibitors,Agent, Anticoagulant,Agents, Anticoagulant,Agents, Anticoagulation,Drug, Anticoagulant,Drugs, Anticoagulant,Inhibitors, Indirect Thrombin,Thrombin Inhibitors, Indirect
D012439 Saccharin Flavoring agent and non-nutritive sweetener. Saccharin Calcium,Saccharin Sodium,Calcium, Saccharin

Related Publications

Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
February 1994, Journal of neurophysiology,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
October 1988, Biophysical journal,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
January 2005, Redox report : communications in free radical research,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
June 1994, The Journal of biological chemistry,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
October 1984, FEBS letters,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
January 1995, Methods and findings in experimental and clinical pharmacology,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
January 1999, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Y Okada, and R Fujiyama, and T Miyamoto, and T Sato
April 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Copied contents to your clipboard!