Sustained release of 5-fluorouracil from polymeric nanoparticles. 2000

P A McCarron, and A D Woolfson, and S M Keating
School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, UK. p.mccarron@qub.ac.uk

The use of biodegradable nanoparticles loaded with 5-fluorouracil was investigated as a potential means to sustain the release of this drug. Nanoparticles prepared from four biodegradable polymers were loaded with 5-fluorouracil using three loading concentrations of drug and three different concentrations of added polymer. Washing particles using a centrifugation/re-suspension with ultrasound protocol was found to dislodge the majority of drug, resulting in an over-estimation of incorporation efficiency and low levels of strongly entrapped drug. Increasing the initial 5-fluorouracil concentration before polymer/monomer addition increased the drug loading in both washed and unwashed particles. Increasing the amount of polymer used to make nanoparticles did not increase loadings, but did produce increased amounts of unusable polymer waste. Drug release from nanoparticles was evaluated using a Franz cell diffusion apparatus, which showed an initial burst effect followed by a slower release phase over 24 h. Indeed, nanoparticles prepared from poly(lactide-co-glycolide) released 66% of their 5-fluorouracil payload over this period. It was concluded that 5-fluorouracil-loaded nanoparticles could be readily included into a hydrogel-based delivery system to provide sustained drug release for trans-epithelial drug-delivery applications.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010599 Pharmacokinetics Dynamic and kinetic mechanisms of exogenous chemical DRUG LIBERATION; ABSORPTION; BIOLOGICAL TRANSPORT; TISSUE DISTRIBUTION; BIOTRANSFORMATION; elimination; and DRUG TOXICITY as a function of dosage, and rate of METABOLISM. LADMER, ADME and ADMET are abbreviations for liberation, absorption, distribution, metabolism, elimination, and toxicology. ADME,ADME-Tox,ADMET,Absorption, Distribution, Metabolism, Elimination, and Toxicology,Absorption, Distribution, Metabolism, and Elimination,Drug Kinetics,Kinetics, Drug,LADMER,Liberation, Absorption, Distribution, Metabolism, Elimination, and Response
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D003692 Delayed-Action Preparations Dosage forms of a drug that act over a period of time by controlled-release processes or technology. Controlled Release Formulation,Controlled-Release Formulation,Controlled-Release Preparation,Delayed-Action Preparation,Depot Preparation,Depot Preparations,Extended Release Formulation,Extended Release Preparation,Prolonged-Action Preparation,Prolonged-Action Preparations,Sustained Release Formulation,Sustained-Release Preparation,Sustained-Release Preparations,Timed-Release Preparation,Timed-Release Preparations,Controlled-Release Formulations,Controlled-Release Preparations,Extended Release Formulations,Extended Release Preparations,Slow Release Formulation,Sustained Release Formulations,Controlled Release Formulations,Controlled Release Preparation,Controlled Release Preparations,Delayed Action Preparation,Delayed Action Preparations,Formulation, Controlled Release,Formulations, Controlled Release,Prolonged Action Preparation,Release Formulation, Controlled,Release Formulations, Controlled,Sustained Release Preparation,Timed Release Preparation,Timed Release Preparations
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D005472 Fluorouracil A pyrimidine analog that is an antineoplastic antimetabolite. It interferes with DNA synthesis by blocking the THYMIDYLATE SYNTHETASE conversion of deoxyuridylic acid to thymidylic acid. 5-FU,5-FU Lederle,5-FU Medac,5-Fluorouracil,5-Fluorouracil-Biosyn,5-HU Hexal,5FU,Adrucil,Carac,Efudex,Efudix,Fluoro-Uracile ICN,Fluoroplex,Fluorouracil Mononitrate,Fluorouracil Monopotassium Salt,Fluorouracil Monosodium Salt,Fluorouracil Potassium Salt,Fluorouracil-GRY,Fluorouracile Dakota,Fluorouracilo Ferrer Far,Fluoruracil,Fluracedyl,Flurodex,Haemato-FU,Neofluor,Onkofluor,Ribofluor,5 FU Lederle,5 FU Medac,5 Fluorouracil,5 Fluorouracil Biosyn,5 HU Hexal,Dakota, Fluorouracile,Fluoro Uracile ICN,Fluorouracil GRY,Haemato FU
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug

Related Publications

P A McCarron, and A D Woolfson, and S M Keating
September 1996, Ophthalmic surgery and lasers,
P A McCarron, and A D Woolfson, and S M Keating
November 1992, Investigative ophthalmology & visual science,
P A McCarron, and A D Woolfson, and S M Keating
May 1992, Research communications in chemical pathology and pharmacology,
P A McCarron, and A D Woolfson, and S M Keating
January 1989, Journal of ocular pharmacology,
P A McCarron, and A D Woolfson, and S M Keating
March 2013, AAPS PharmSciTech,
P A McCarron, and A D Woolfson, and S M Keating
September 2008, Acta pharmacologica Sinica,
P A McCarron, and A D Woolfson, and S M Keating
August 2002, Journal of biomedical materials research,
P A McCarron, and A D Woolfson, and S M Keating
November 2010, Journal of controlled release : official journal of the Controlled Release Society,
P A McCarron, and A D Woolfson, and S M Keating
December 2010, Chemical communications (Cambridge, England),
Copied contents to your clipboard!