Determination of cilostazol and its metabolites in human urine by high performance liquid chromatography. 2001

P N Tata, and C H Fu, and S L Bramer
Otsuka America Pharmaceutical, Inc., Development Department, Rockville, MD 20850, USA.

A high performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous quantification of cilostazol, and its known metabolites in human urine was developed and validated. Cilostazol, its metabolites and the internal standard OPC-3930 (structural analogue of cilostazol) were extracted from human urine using liquid-liquid extraction with chloroform. The organic extract was then evaporated and the residue was reconstituted in 8% acetonitrile in ammonium acetate buffer (pH 6.5). The reconstituted solution was injected onto an HPLC system and was subjected to reverse-phase HPLC on a 5-microm ODS column. A gradient mobile phase with different percentages of acetonitrile in acetate buffer (pH 6.5) was used for the resolution of analytes. Cilostazol, its metabolites and the internal standard were well resolved at baseline with adequate resolution from constituents of human urine. The lower limit of quantification was 100 ng/ml for cilostazol and all metabolites. The method was validated for a linear range of 100-3000 ng/ml for all the metabolites and cilostazol. The overall accuracy (% relative recovery) of this method ranged from 86.1 to 116.8% for all the analytes with overall precision (%CV) being 0.8-19.7%. The long-term stability of clinical urine samples was established for at least 3 months at -20 degrees C in a storage freezer. During validation, calibration curves had correlation coefficients greater than or equal to 0.995 for cilostazol and the seven tested metabolites. The method was successfully used for the analysis of cilostazol and its metabolites in urine samples from clinical studies, demonstrating the reliability and robustness of the method.

UI MeSH Term Description Entries
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077407 Cilostazol A quinoline and tetrazole derivative that acts as a phosphodiesterase type 3 inhibitor, with anti-platelet and vasodilating activity. It is used in the treatment of PERIPHERAL VASCULAR DISEASES; ISCHEMIC HEART DISEASE; and in the prevention of stroke. 6-(4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy)-3,4-dihydro-2(1H)-quinolinone,OPC 13013,OPC-13013,Pletal
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013777 Tetrazoles
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

P N Tata, and C H Fu, and S L Bramer
August 1988, Journal of chromatography,
P N Tata, and C H Fu, and S L Bramer
August 1977, Analytical chemistry,
P N Tata, and C H Fu, and S L Bramer
February 1996, Journal of chromatography. B, Biomedical applications,
P N Tata, and C H Fu, and S L Bramer
January 1979, Drug metabolism and disposition: the biological fate of chemicals,
P N Tata, and C H Fu, and S L Bramer
June 1994, Therapeutic drug monitoring,
P N Tata, and C H Fu, and S L Bramer
February 1993, Journal of chromatography,
P N Tata, and C H Fu, and S L Bramer
July 1984, Journal of chromatography,
P N Tata, and C H Fu, and S L Bramer
January 1998, Journal of chromatography. B, Biomedical sciences and applications,
Copied contents to your clipboard!