The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5. 1975

N C Robinson, and C Tanford

Cytochrome b5 is composed of two domains that can be isolated after tryptic cleavage as two polypeptide fragments. One fragment is globular and hydrophilic and contains the heme; the other fragment is rich in hydrophobic amino acids and is essential for recombination of cytochrome b5 with microsomal membranes (Ito, A., and Sato, R. (1968), J. Biol. Chem. 243, 4922; Spatz, L., and Strittmatter, P. (1971), Proc. Nat. Acad. Sci. U.S. 68, 1042). Equilibrium dialysis and sedimentation equilibrium measurements of the binding of deoxycholate, Triton X-100 and dodecyl sulfate show that neither intact cytochrome b5 nor its proteolytic fragments possess high affinity binding sites for any of these amphiphiles. However, each detergent binds to the protein in a highly cooperative manner at concentrations near the critical micelle concentration. Binding measurements using the separated tryptic fragments show that deoxycholate and Triton X-100 (both nondenaturing detergents) bind to the hydrophobic fragment to the same extent as to intact cytochrome b5, and not at all to the polar fragment. Sodium dodecyl sulfate (a denaturing detergent) is bound to both tryptic fragments, but 70% of the detergent is bound to the hydrophobic fragment although it comprises only 30% of the protein mass. Less detailed measurements were made with synthetic and natural phosphatidylcholines, and show that the intact protein is quantitatively incorporated into phosphatidylcholine vesicles, but that no interaction with the polar fragment occurs. These results are interpreted in terms of the hydrophobic domain of cytochrome b5 having a diffuse hydrophobic surface that can act as a nonspecific nucleus for the formation of a micelle with a variety of amphiphilic substances. This domain of the molecule will insert into any available hydrophobic environment, whether it be detergent micelles, synthetic phospholipid vesicles, or the microsomal membrane. The incorporation of cytochrome b5 into the microsomal membrane is only a specialized case of the general property.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

N C Robinson, and C Tanford
April 1996, Biochimica et biophysica acta,
N C Robinson, and C Tanford
June 1979, The Journal of biological chemistry,
N C Robinson, and C Tanford
July 1973, The Journal of biological chemistry,
N C Robinson, and C Tanford
July 2010, Huan jing ke xue= Huanjing kexue,
N C Robinson, and C Tanford
January 1979, Biochimica et biophysica acta,
N C Robinson, and C Tanford
September 1981, Biochimica et biophysica acta,
N C Robinson, and C Tanford
September 1973, Biochemical and biophysical research communications,
Copied contents to your clipboard!