Contractile and electrical properties of sternohyoid muscle in streptozotocin diabetic rats. 2001

M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
Department of Physiology, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin.

1. The effects of diabetes on the electrical and contractile function of skeletal muscle are variable, depending on muscle fibre type distribution. The muscles of the upper airway have a characteristic fibre distribution that differs from previously studied muscles, but the effects of diabetes on upper airway muscle function are unknown. Normally, contraction of upper airway muscles, such as the sternohyoids, dilates and/or stabilizes the upper airway, thereby preventing its collapse. Diabetes is associated with obstructive sleep apnoea in which there is collapse of the upper airway due to failure of the upper airway musculature to maintain airway patency. Therefore, the purpose of the present study was to determine the effects of diabetes on the electrical and contractile characteristics of upper airway muscle. 2. Rats were treated with vehicle (sodium citrate buffer; pH 4.5) or with streptozotocin to induce diabetes, confirmed by the presence of hyperglycaemia, and the contractile and electrical properties of the sternohyoid were compared in these two groups. Isometric contractile properties and membrane potentials were determined in isolated sternohyoid muscles in physiological saline solution at 25 degrees C. 3. Streptozotocin had no effect on sternohyoid muscle fatigue, the tension-frequency relationship or membrane potentials, but did increase contraction time, half-relaxation time, twitch tension and tetanic tension. 4. Streptozotocin-induced diabetes has no effect on sternohyoid muscle fatigue or the tension-frequency relationship, but does reduce contractile kinetics and increases force generation. These effects are not due to changes in resting membrane potential. These data are evidence that the association of sleep apnoea and diabetes is not due to effects on upper airway muscle contractile properties.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
June 1996, British journal of urology,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
January 2010, Molecular and cellular biochemistry,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
June 2018, Journal of musculoskeletal & neuronal interactions,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
February 2006, Respiratory physiology & neurobiology,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
November 1992, Experimental physiology,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
November 1980, Research communications in chemical pathology and pharmacology,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
October 2013, Experimental cell research,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
October 1975, Cell and tissue research,
M McGuire, and M Dumbleton, and M MacDermott, and A Bradford
August 1996, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
Copied contents to your clipboard!