The glutathione peroxidases. 2000

J R Arthur
Rowett Research Institute, Aberdeen, Scotland, United Kingdom. jra@rri.sari.ac.uk

There are several proteins in mammalian cells that can metabolize hydrogen peroxide and lipid hydroperoxides. These proteins include four selenium-containing glutathione peroxidases that are found in different cell fractions and tissues of the body. This review considers the structure and distribution of the selenoperoxidases and how this relates to their biological function. The functions of the selenoperoxidases were originally studied in systems where their activity was manipulated by changing dietary selenium levels. More recently, molecular techniques have allowed overexpression of selenoperoxidases in cell lines and animals. Additionally, cellular glutathione peroxidase knockout mice have been used to investigate the functions of this protein. From this work it is clear that the selenoperoxidases are involved in cell antioxidant systems. However, they also have more subtle functions in ensuring the regulation and formation of arachadonic acid metabolites that are derived from hydroperoxide intermediates. The range of biological processes, which are potentially dependent on optimal selenoperoxidase activity in mammals, emphasises the importance of achieving adequate selenium intake in the diet.

UI MeSH Term Description Entries
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012643 Selenium An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. Selenium-80,Selenium 80
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D051140 Selenoproteins Selenoproteins are proteins that specifically incorporate SELENOCYSTEINE into their amino acid chain. Most selenoproteins are enzymes with the selenocysteine residues being responsible for their catalytic functions. Selenoprotein,Selenoprotein P1
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

J R Arthur
May 2013, Biochimica et biophysica acta,
J R Arthur
October 2017, Oncotarget,
J R Arthur
January 1995, Methods in enzymology,
J R Arthur
September 2008, Antioxidants & redox signaling,
J R Arthur
April 2003, Biological chemistry,
J R Arthur
January 2011, Frontiers in molecular neuroscience,
J R Arthur
May 2002, The Journal of biological chemistry,
J R Arthur
January 1986, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
J R Arthur
January 2002, Methods in enzymology,
Copied contents to your clipboard!