Actin polymerisation during morphogenesis of the acrosome as spermatozoa undergo epididymal maturation in the tammar wallaby (Macropus eugenii). 2001

C J Scarlett, and M Lin, and R J Aitken
Cooperative Research Centre for Conservation and Management of Marsupials, School of Biological and Chemical Sciences, The University of Newcastle, NSW, Australia.

In the tammar wallaby (Macropus eugenii), post-testicular acrosomal shaping involves a complex infolding and fusion of the anterior and lateral projections of the scoop-shaped acrosome into a compact button-like structure occupying the depression on the anterior end of the sperm nucleus. The present study has generated cytochemical and histological evidence to demonstrate that the occurrence of actin filaments (F-actin, labelled by Phalloidin-FITC) in the acrosome of tammar wallaby spermatozoa is temporally and spatially associated with the process of acrosomal shaping in the epididymis, through a pool of monomeric actin (G-actin, labelled by Rh-DNase I) present in the acrosome throughout all stages of epididymal maturation. F-actin was not detected in the acrosome of testicular spermatozoa, but was found in the infolding and condensing acrosome of caput and corpus epididymal spermatozoa. When the spermatozoa completed acrosome shaping in the cauda epididymidis, F-actin disappeared from the acrosomal area. The strong correlation between the occurrence of F-actin and the events of acrosomal shaping suggested that the post-testicular shaping of the acrosome might depend on a precise succession of assembly and disassembly of F-actin within the acrosome as the spermatozoa transit the epididymis. Thus, actin filaments might play a significant role in the acrosomal transformation, as they are commonly involved in morphological changes in somatic cells.

UI MeSH Term Description Entries
D007614 Macropodidae A family of herbivorous leaping MAMMALS of Australia, New Guinea, and adjacent islands. Members include kangaroos, wallabies, quokkas, and wallaroos. Kangaroos,Macropus,Petrogale,Quokkas,Setonix,Wallabies,Wallabies, Rock,Wallaroo,Macropus robustus,Kangaroo,Petrogales,Quokka,Rock Wallabies,Rock Wallaby,Wallaby,Wallaby, Rock,Wallaroos
D008297 Male Males
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000177 Acrosome The cap-like structure covering the anterior portion of SPERM HEAD. Acrosome, derived from LYSOSOMES, is a membrane-bound organelle that contains the required hydrolytic and proteolytic enzymes necessary for sperm penetration of the egg in FERTILIZATION. Acrosomes
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C J Scarlett, and M Lin, and R J Aitken
July 1993, Molecular reproduction and development,
C J Scarlett, and M Lin, and R J Aitken
February 1997, Journal of anatomy,
C J Scarlett, and M Lin, and R J Aitken
February 2004, Journal of experimental zoology. Part A, Comparative experimental biology,
C J Scarlett, and M Lin, and R J Aitken
September 1999, Journal of reproduction and fertility,
C J Scarlett, and M Lin, and R J Aitken
March 1992, Journal of reproduction and fertility,
C J Scarlett, and M Lin, and R J Aitken
February 1997, Australian veterinary journal,
C J Scarlett, and M Lin, and R J Aitken
March 1993, Molecular reproduction and development,
C J Scarlett, and M Lin, and R J Aitken
March 1997, Hearing research,
C J Scarlett, and M Lin, and R J Aitken
September 1980, Journal of reproduction and fertility,
Copied contents to your clipboard!