Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. 2001

J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
Research Center for Brain Repair, Department of Neurological Sciences, Chicago, IL, USA. jkordowe@rush.edu

Layer II of the entorhinal cortex contains the cells of origin for the perforant path, plays a critical role in memory processing, and consistently degenerates in end-stage Alzheimer's disease. The extent to which neuron loss in layer II of entorhinal cortex is related to mild cognitive impairment without dementia has not been extensively investigated. We analyzed 29 participants who came to autopsy from our ongoing longitudinal study of aging and dementia composed of religious clergy (Religious Orders Study). All individuals underwent detailed clinical evaluation within 12 months of death and were categorized as having no cognitive impairment (n = 8), mild cognitive impairment (n = 10), or mild or moderate Alzheimer's disease (n = 11). Sections through the entorhinal cortex were immunoreacted with an antibody directed against a neuron-specific nuclear protein (NeuN). Stereological counts of NeuN-immunoreactive stellate cells, their volume, and the volume of layer II entorhinal cortex were estimated. Cases exhibiting no cognitive impairment averaged 639,625 +/- 184,600 layer II stellate neurons in the right entorhinal cortex. Individuals with mild cognitive impairment (63.5%; p < 0.0003) and mild or moderate Alzheimer's disease (46.06%; p < 0.0017) displayed significant losses of layer II entorhinal cortex neurons relative to those with no cognitive impairment but not relative to each other (p > 0.33). There was also significant atrophy of layer II entorhinal cortex neurons in individuals with mild cognitive impairment (24.1%) and Alzheimer's disease (25.1%). The volume of layer II was also reduced in individuals with mild cognitive impairment (26.5%), with a further reduction in those with Alzheimer's disease (46.4%). The loss and atrophy of layer II entorhinal cortex neurons significantly correlated with performance on clinical tests of declarative memory. Atrophy of layer II entorhinal cortex and the neurons within this layer significantly correlated with performance on the Mini Mental Status Examination. These data indicate that atrophy and loss of layer II entorhinal cortex neurons occur in elderly subjects with mild cognitive impairment prior to the onset of dementia and suggests that these changes are not exacerbated in early Alzheimer's disease.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D003072 Cognition Disorders Disorders characterized by disturbances in mental processes related to learning, thinking, reasoning, and judgment. Overinclusion,Disorder, Cognition,Disorders, Cognition
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D000690 Amyotrophic Lateral Sclerosis A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94) ALS - Amyotrophic Lateral Sclerosis,Lou Gehrig Disease,Motor Neuron Disease, Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis With Dementia,Amyotrophic Lateral Sclerosis, Guam Form,Amyotrophic Lateral Sclerosis, Parkinsonism-Dementia Complex of Guam,Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia Complex 1,Charcot Disease,Dementia With Amyotrophic Lateral Sclerosis,Gehrig's Disease,Guam Disease,Guam Form of Amyotrophic Lateral Sclerosis,Lou Gehrig's Disease,Lou-Gehrigs Disease,ALS Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis Parkinsonism Dementia Complex 1,Amyotrophic Lateral Sclerosis, Parkinsonism Dementia Complex of Guam,Disease, Guam,Disease, Lou-Gehrigs,Gehrig Disease,Gehrigs Disease,Sclerosis, Amyotrophic Lateral
D001284 Atrophy Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes. Atrophies
D018728 Entorhinal Cortex Cerebral cortex region on the medial aspect of the PARAHIPPOCAMPAL GYRUS, immediately caudal to the OLFACTORY CORTEX of the uncus. The entorhinal cortex is the origin of the major neural fiber system afferent to the HIPPOCAMPAL FORMATION, the so-called PERFORANT PATHWAY. Brodmann Area 28,Brodmann Area 34,Brodmann's Area 28,Brodmann's Area 34,Entorhinal Area,Area Entorhinalis,Entorhinal Cortices,Secondary Olfactory Cortex,Area 28, Brodmann,Area 28, Brodmann's,Area 34, Brodmann,Area 34, Brodmann's,Area, Entorhinal,Brodmanns Area 28,Brodmanns Area 34,Cortex, Entorhinal,Cortex, Secondary Olfactory,Entorhinal Areas,Olfactory Cortex, Secondary,Secondary Olfactory Cortices

Related Publications

J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
July 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
December 2019, Aging and disease,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
January 2020, Journal of Alzheimer's disease : JAD,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
December 2012, Psychiatry and clinical neurosciences,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
April 2022, Neurobiology of aging,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
January 2017, Alzheimer's & dementia (Amsterdam, Netherlands),
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
August 1999, Experimental neurology,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
July 1992, The Journal of comparative neurology,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
March 2007, Neurology,
J H Kordower, and Y Chu, and G T Stebbins, and S T DeKosky, and E J Cochran, and D Bennett, and E J Mufson
March 2004, Neurobiology of aging,
Copied contents to your clipboard!