Monoclonal antibodies derived from BALB/c mice immunized with apoptotic Jurkat T cells recognize known autoantigens. 2001

T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
The Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham & Women's Hospital, Boston, MA 02115, USA.

It has been postulated that post-translational modifications and relocalization of proteins during apoptosis may lead to presentation of these molecules to the immune system in such a way that normal mechanisms of tolerance are bypassed. In the present study, Jurkat cells were induced to undergo apoptosis by treatment with the chemotherapeutic agent Ara-C. BALB/c mice were then immunized with the apoptotic cells and hybridomas were generated. Using an indirect immunofluorescence assay, the monoclonal antibodies produced were screened by flow cytometry for those monoclonal antibodies demonstrating reactivity with permeabilized apoptotic Jurkat cells but not with non-permeabilized normal or apoptotic Jurkat cells. Of 281 monoclonal antibodies, 20 monoclonal antibodies with these properties were selected for further analysis. Using 32P- or 35S-metabolically labelled Jurkat cells, these selected monoclonal antibodies were screened for their ability to recognize autoantigens by immunoprecipitation and Western blotting. Well characterized autoimmune sera were then used to confirm the identity of autoantigens by immunoblotting. We demonstrate that immunization of normal mice with apoptotic Jurkat cells results in the formation of antibodies targeting multiple autoantigens or autoantigen complexes, including Ku, rRNPs, snRNPs and vimentin. These findings are consistent with the hypothesis that apoptosis can contribute to the development of autoimmunity.

UI MeSH Term Description Entries
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072200 Ku Autoantigen An ATP-dependent DNA HELICASE that preferentially binds SINGLE-STRANDED DNA. It is a heterodimer consisting of an 80 kDa subunit (XRCC5) and 70 kDa subunit (XRCC6) that functions with DNA LIGASE IV in the repair of DOUBLE-STRANDED DNA BREAKS and V(D)J RECOMBINATION. G22P1 Antigen,Ku Antigen,Ku Autoantigen, 70 kDa,Ku Autoantigen, 80 kDa,Ku Heterodimer,Ku Protein,Ku70 Antigen,Ku80 Antigen,X-ray Repair Cross-Complementing Protein 5,X-ray Repair Cross-Complementing Protein 6,XRCC5 Protein,XRCC6 Protein,Antigen, G22P1,Antigen, Ku,Antigen, Ku70,Antigen, Ku80,Autoantigen, Ku,Heterodimer, Ku,X ray Repair Cross Complementing Protein 5,X ray Repair Cross Complementing Protein 6
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
May 1989, Journal of immunological methods,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
July 1985, Journal of clinical & laboratory immunology,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
October 2000, Cell death and differentiation,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
November 1970, Journal of the National Cancer Institute,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
April 2006, Journal of periodontology,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
February 1994, Cancer research,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
January 1998, Veterinary immunology and immunopathology,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
March 2006, Infection and immunity,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
October 2001, Memorias do Instituto Oswaldo Cruz,
T J Gensler, and M Hottelet, and C Zhang, and S Schlossman, and P Anderson, and P J Utz
September 2011, Journal of proteomics,
Copied contents to your clipboard!