Postsegregational killing mediated by the P1 phage "addiction module" phd-doc requires the Escherichia coli programmed cell death system mazEF. 2001

R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.

"Addiction modules" consist of two genes; the product of the second is long lived and toxic, while the product of the first is short lived and antagonizes the lethal action of the toxin. The extrachromosomal addiction module phd-doc, located on the P1 prophage, is responsible for the postsegregational killing effect (death of plasmid-free cells). The Escherichia coli chromosomal addiction module analogue, mazEF, is responsible for the induction of programmed cell death. Here we show that the postsegregational killing mediated by the P1 phd-doc module depends on the presence of the E. coli mazEF system. In addition, we demonstrate that under conditions of postsegregational killing, mediated by phd-doc, protein synthesis of E. coli is inhibited. Based on our findings, we suggest the existence of a coupling between the phd-doc and mazEF systems.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000992 Antitoxins Antisera from immunized animals that is purified and used as a passive immunizing agent against specific BACTERIAL TOXINS. Antitoxin
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D017101 Bacteriophage P1 A species of temperate bacteriophage in the genus P1-like viruses, family MYOVIRIDAE, which infects E. coli. It is the largest of the COLIPHAGES and consists of double-stranded DNA, terminally redundant, and circularly permuted. Coliphage P1,Enterobacteria phage P1,P1 Phage,Phage P1,P1 Phages,Phage, P1,Phages, P1
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
September 2004, Molecular genetics and genomics : MGG,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
December 2016, Journal of basic microbiology,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
March 2003, Journal of bacteriology,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
December 1998, Journal of bacteriology,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
August 2003, The Journal of biological chemistry,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
February 2015, Critical reviews in microbiology,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
October 2005, Journal of cell science,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
June 1996, Proceedings of the National Academy of Sciences of the United States of America,
R Hazan, and B Sat, and M Reches, and H Engelberg-Kulka
January 1999, The Journal of biological chemistry,
Copied contents to your clipboard!