Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. 2001

R S Lee, and S C Steffensen, and S J Henriksen
Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.

Although mesolimbic dopamine (DA) transmission has been implicated in behavioral and cortical arousal, DA neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are not significantly modulated by anesthetics or the sleep-wake cycle. However, VTA and SN non-DA neurons evince increased firing rates during active wakefulness (AW) and rapid eye movement (REM) sleep, relative to quiet wakefulness. Here we describe the effects of movement, select anesthetics, and the sleep-wake cycle on the activity of a homogeneous population of VTA GABA-containing neurons during normal sleep and after 24 hr sleep deprivation. In freely behaving rats, VTA GABA neurons were relatively fast firing (29 +/- 6 Hz during AW), nonbursting neurons that exhibited markedly increased activity during the onset of discrete movements. Adequate anesthesia produced by administration of chloral hydrate, ketamine, or halothane significantly reduced VTA GABA neuron firing rate and converted their activity into phasic 0.5-2.0 sec ON/OFF periods. VTA GABA neuron firing rate decreased 53% during slow-wave sleep (SWS) and increased 79% during REM, relative to AW; however, the discharging was not synchronous with electrocortical alpha wave activity during AW, delta wave activity during SWS, or gamma wave activity during REM. During deprived SWS, there was a direct correlation between increased VTA GABA neuron slowing and increased delta wave power. These findings indicate that the discharging of VTA GABA neurons correlates with psychomotor behavior and that these neurons may be an integral part of the extrathalamic cortical activating system.

UI MeSH Term Description Entries
D008297 Male Males
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R S Lee, and S C Steffensen, and S J Henriksen
June 2019, eLife,
R S Lee, and S C Steffensen, and S J Henriksen
June 2013, Psychopharmacology,
R S Lee, and S C Steffensen, and S J Henriksen
August 2023, Sleep,
R S Lee, and S C Steffensen, and S J Henriksen
January 2018, Frontiers in neuroscience,
R S Lee, and S C Steffensen, and S J Henriksen
September 2021, Molecular psychiatry,
R S Lee, and S C Steffensen, and S J Henriksen
March 2024, eLife,
R S Lee, and S C Steffensen, and S J Henriksen
January 2012, PloS one,
R S Lee, and S C Steffensen, and S J Henriksen
June 2007, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
R S Lee, and S C Steffensen, and S J Henriksen
December 2016, Nature communications,
R S Lee, and S C Steffensen, and S J Henriksen
November 2023, bioRxiv : the preprint server for biology,
Copied contents to your clipboard!