Determination of the mutation rate of poliovirus RNA-dependent RNA polymerase. 2001

V R Wells, and S J Plotch, and J J DeStefano
Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA.

The fidelity of poliovirus RNA-dependent RNA polymerase (3D(pol)) was determined using a system based on the fidelity of synthesis of the alpha-lac gene which codes for a subunit of beta-galactosidase. Synthesis products are screened for mutations by an alpha-complementation assay, in which the protein product from alpha-lac is used in trans to complement beta-galactosidase activity in bacteria that do not express alpha-Lac. Several polymerases have been analyzed by this approach allowing comparisons to be drawn. The assay included RNA synthesis by 3D(pol) on an RNA template that coded for the N-terminal region of alpha-Lac. The product of this reaction was used as a template for a second round of 3D(pol) synthesis and the resulting RNA was reverse transcribed to DNA by MMLV-RT. The DNA was amplified by PCR and inserted into a vector used to transform Escherichia coli. The bacteria were screened for beta-galactosidase activity by blue-white phenotype analysis with white or faint blue colonies scored as errors made during synthesis on alpha-lac. Results showed a mutation rate for 3D(pol) corresponding to approximately 4.5x10(-4) errors per base (one error in approximately 2200 bases). Analysis of mutations showed that base substitutions occurred with greater frequency than deletions and insertions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012324 RNA-Dependent RNA Polymerase An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293) Nucleoside-Triphosphate:RNA Nucleotidyltransferase (RNA-directed),RNA Replicase,RNA-Dependent RNA Replicase,RNA-Directed RNA Polymerase,RNA Dependent RNA Polymerase,RNA Dependent RNA Replicase,RNA Directed RNA Polymerase,RNA Polymerase, RNA-Dependent,RNA Polymerase, RNA-Directed,RNA Replicase, RNA-Dependent,Replicase, RNA,Replicase, RNA-Dependent RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

V R Wells, and S J Plotch, and J J DeStefano
August 1997, Structure (London, England : 1993),
V R Wells, and S J Plotch, and J J DeStefano
July 1995, RNA (New York, N.Y.),
V R Wells, and S J Plotch, and J J DeStefano
December 1996, Journal of virology,
V R Wells, and S J Plotch, and J J DeStefano
July 2013, Journal of molecular biology,
V R Wells, and S J Plotch, and J J DeStefano
November 2013, The Journal of biological chemistry,
V R Wells, and S J Plotch, and J J DeStefano
May 2007, Virology journal,
V R Wells, and S J Plotch, and J J DeStefano
September 2004, The EMBO journal,
V R Wells, and S J Plotch, and J J DeStefano
June 1993, Journal of virology,
V R Wells, and S J Plotch, and J J DeStefano
August 2006, Journal of virology,
Copied contents to your clipboard!