Phosphate transport in rat liver mitochondria. Membrane components labeled by N-ethylmaleimide during inhibition of transport. 1975

W A Coty, and P L Pedersen

N-ethylmaleimide (NEM) inhibits the transport of phosphate in mitochondria but is without effect on permeation of other metabolities. In spite of its specificity for inhibition of phosphate transport, NEM reacts in an unspecific manner with inner membrane proteins in general. Treatment of mitochondria with [3H]NEM just sufficient to produce inhibition of phosphate transport results in labeling of at least 10 polypeptide components of the inner membrane. A marked increase in the specificity of reaction of NEM for components of the phosphate transport system is attained by first protecting the transport system with p-mercuribenzoate (p-MB) and then by irreversibly blocking reactive sulfhydryl groups unassociated with transport by the addition of unlabeled NEM. Subsequent addition of dithiothreitol removes p-MB and restores 65 to 75 percent of the original phosphate transport activity. Reinhibition of transport with [3H]NEM results in both a 6-fold decrease in the amount of [3H]NEM bound by purified inner membrane vesicles and a substantial reduction in the number of labeled polypeptide components. Five distinct labeled species are detected by this method, one of which is a 32,000 molecular weight protein containing 40 percent of the bound radioactivity, or approximately 160 pmol/mg of inner membrane protein. Correlation of binding of [3H]NEM by inner membrane proteins with inhibition of phosphate transport suggests that the maximum concentration of the NEM-sensitive component of the phosphate transport system is 60 pmol/mg of mitochondrial protein. This value, when combined with V-max of NEM-sensitive transport of 205 nmol times min-1 times mg-1 at O degrees (Coty, W. A., and Pedersen, P. L. (1974) J. Biol. Chem. 249, 2593) yields an approximate minimum turnover for this process of 3500 min-1 at 0 degrees. This turnover number is at least 20-fold greater than similarly calculated values for adenine nucleotide transport and succinate oxidation in rat liver mitochondria at this temperature. Taken together these results suggest that the NEM-sensitive phosphate transport system in rat liver mitochondria has an unusually high catalytic activity compared to other mitochondrial processes, and that at least one of the five NEM-binding proteins is likely to be an essential component of this transport system.

UI MeSH Term Description Entries
D008297 Male Males
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008626 Mercuribenzoates Mercury-containing benzoic acid derivatives. Mercuribenzoic Acids,Acids, Mercuribenzoic
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008933 Mitochondrial Swelling An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide

Related Publications

W A Coty, and P L Pedersen
March 1978, FEBS letters,
W A Coty, and P L Pedersen
September 1980, Bollettino della Societa italiana di biologia sperimentale,
W A Coty, and P L Pedersen
November 1973, FEBS letters,
W A Coty, and P L Pedersen
March 1971, Biochimica et biophysica acta,
W A Coty, and P L Pedersen
April 1984, Journal of bioenergetics and biomembranes,
W A Coty, and P L Pedersen
February 1978, European journal of biochemistry,
Copied contents to your clipboard!