Complete 5' and 3' end maturation of group II intron-containing tRNA precursors. 2001

J Vogel, and W R Hess
University of Uppsala, Institute of Cellular and Molecular Biology, Department of Microbiology, Sweden. joerg.vogel@icm.uu.se

Higher plant chloroplasts provide the only experimentally validated example of functional tRNA genes that are disrupted by group II introns. Here, precursor transcripts for tRNA(Gly)(UCC), tRNA(Val)(UAC), and tRNA(Ala)(UGC) were investigated for processing of 5' leader and 3' trailer sequences in vivo. Use of intron-specific primer pairs and inclusion of a barley chloroplast splicing mutant specifically allowed us to evaluate the potential effect of intervening sequences that disrupt tRNA secondary and tertiary structures. The data suggest that (1) neither integrity of the dihydrouridine nor the anticodon domain is required for the nucleotidyltransferase-mediated addition of 3'-terminal CCA; (2) interruption of these two structural elements by group II introns does not interfere with nucleotide-specific 5' maturation by RNase P; (3) processing intermediates of chloroplast tRNAs can be 3' polyadenylated; and (4) plastid DNA-encoded proteins are not required for 3' and 5' maturation of plastid tRNAs.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D001467 Hordeum A plant genus of the family POACEAE. The EDIBLE GRAIN, barley, is widely used as food. Barley,Hordeum vulgare
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

J Vogel, and W R Hess
April 2008, Biological chemistry,
J Vogel, and W R Hess
January 1998, Proceedings of the National Academy of Sciences of the United States of America,
J Vogel, and W R Hess
July 1972, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J Vogel, and W R Hess
March 1992, Science (New York, N.Y.),
J Vogel, and W R Hess
March 1992, Science (New York, N.Y.),
J Vogel, and W R Hess
November 1990, Trends in biochemical sciences,
J Vogel, and W R Hess
October 2021, RNA (New York, N.Y.),
J Vogel, and W R Hess
December 2014, International journal of molecular sciences,
Copied contents to your clipboard!