Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications. 2000

L M Proctor, and R P Gunsalus
Department of Oceanography, Florida State University, Tallahassee 32306-4320, USA.

Two symbiotic species, Photobacterium leiognathi and Vibrio fischeri, and one non-symbiotic species, Vibrio harveyi, of the Vibrionaceae were tested for their ability to grow by anaerobic respiration on various electron acceptors, including trimethylamine N-oxide (TMAO) and dimethylsulphoxide (DMSO), compounds common in the marine environment. Each species was able to grow anaerobically with TMAO, nitrate or fumarate, but not with DMSO, as an electron acceptor. Cell growth under microaerophilic growth conditions resulted in elevated levels of TMAO reductase, nitrate reductase and fumarate reductase activity in each strain, whereas growth in the presence of the respective substrate for each enzyme further elevated enzyme activity. TMAO reductase specific activity was the highest of all the reductases. Interestingly, the bacteria-colonized light organs from the two squids, Euprymna scolopes and Euprymna morsei, and the light organ of the ponyfish, Leiognathus equus, also had high levels of TMAO reductase enzyme activity, in contrast to non-symbiotic tissues. The ability of these bacterial symbionts to support cell growth by respiration with TMAO may conceivably eliminate the competition for oxygen needed for both bioluminescence and metabolism.

UI MeSH Term Description Entries
D008744 Methylamines Derivatives of methylamine (the structural formula CH3NH2).
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D010776 Photobacterium A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that are common in the marine environment and on the surfaces and in the intestinal contents of marine animals. Some species are bioluminescent and are found as symbionts in specialized luminous organs of fish.
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005650 Fumarates Compounds based on fumaric acid. Fumarate,Fumaric Acid Ester,Fumaric Acid Esters,Fumarate Esters,Acid Ester, Fumaric,Acid Esters, Fumaric,Ester, Fumaric Acid,Esters, Fumarate,Esters, Fumaric Acid
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

L M Proctor, and R P Gunsalus
January 1977, Zeitschrift fur allgemeine Mikrobiologie,
L M Proctor, and R P Gunsalus
January 2005, Luminescence : the journal of biological and chemical luminescence,
L M Proctor, and R P Gunsalus
September 2008, Journal of bacteriology,
L M Proctor, and R P Gunsalus
October 1983, Biochimica et biophysica acta,
Copied contents to your clipboard!