Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family. 2001

T K Nemoto, and T Ono, and K Tanaka
Department of Oral Biochemistry, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan. tnemoto@net.nagasaki-u.ac.jp

In the present study we investigated the substrate-binding characteristics of three members of the 90 kDa heat shock protein (HSP90) family, namely the alpha isoform of human HSP90 (HSP90alpha), human GRP94 (94 kDa glucose-regulated protein, a form of HSP90 from endoplasmic reticulum), and HtpG (the Escherichia coli homologue of HSP90) and the domain responsible for these characteristics. The recombinant forms of HSP90alpha, GRP94 and HtpG existed as dimers and became oligomerized at higher temperatures. Among the three family members, HtpG required the highest temperature (65 degrees C) for its transition to oligomeric forms. The precipitation of the substrate protein, glutathione S-transferase, which occurred at 55 degrees C, was efficiently prevented by the simultaneous presence of a sufficient amount of HSP90alpha or GRP94, but not by HtpG, which was still present as a dimer at that temperature. However, precipitation was stopped completely at 65-70 degrees C, at which temperature HtpG was oligomerized. Thus the transition of HSP90-family proteins to a state with self-oligomerization ability is essential for preventing the precipitation of substrate proteins. We then investigated the domain responsible for the substrate binding of HtpG on the basis of the three domain structures. The self-oligomerizing and substrate-binding activities towards glutathione S-transferase and citrate synthase were both located in a single domain, the N-terminal domain (residues 1-336) of HtpG. We therefore propose that the primary peptide-binding site is located in the N-terminal domain of HSP90-family proteins.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

T K Nemoto, and T Ono, and K Tanaka
May 1993, The Journal of biological chemistry,
T K Nemoto, and T Ono, and K Tanaka
January 2010, Tsitologiia,
T K Nemoto, and T Ono, and K Tanaka
June 1996, Biochemistry and molecular biology international,
T K Nemoto, and T Ono, and K Tanaka
March 1998, The Biochemical journal,
T K Nemoto, and T Ono, and K Tanaka
December 1986, The Journal of biological chemistry,
T K Nemoto, and T Ono, and K Tanaka
November 1991, The Journal of biological chemistry,
T K Nemoto, and T Ono, and K Tanaka
November 1990, Kidney international,
T K Nemoto, and T Ono, and K Tanaka
March 1991, The Journal of biological chemistry,
T K Nemoto, and T Ono, and K Tanaka
December 2000, Archives of biochemistry and biophysics,
Copied contents to your clipboard!