Age-related changes in oxidative damage to lipids and DNA in rat skin. 2001

S Tahara, and M Matsuo, and T Kaneko
Department of Ultrastructure and Research Facilities, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.

Skin is a tissue exposed most frequently to oxidative stress from the environment in daily life. Age-related changes of oxidative damage and antioxidant enzyme activity in the skin were examined in male Fischer 344 rats aged 6 to 30 months. The contents of phosphatidylcholine hydroperoxide (PCOOH) and thiobarbituric acid-reacting substances (TBARS) increased linearly with age. The content of cholesterol hydroperoxide increased until 24 months of age and then decreased. The content of 8-oxo-2'-deoxyguanosine (8-oxodG) increased gradually with age, and was significantly higher at 30 months of age than at 6 months of age. Superoxide dismutase activity tended to decrease with age. The activities of catalase and glutathione peroxidase showed no changes with age. We examined the effect of dietary restriction on the accumulation of oxidative damage in rat skin. The increase in PCOOH content in the skin of dietary-restricted rats was suppressed until 30 months of age. The TBARS and cholesterol hydroperoxide contents in the skin of dietary-restricted rats were significantly lower than in the skin of ad libitum-fed rats, while the 8-oxodG content was somewhat lower in the dietary-restricted rats than the ad libitum-fed rats. These results indicate that oxidative damage to the lipids and DNA in rat skin increases with age and that dietary restriction delays the accumulation of oxidative damage in skin.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D000080242 8-Hydroxy-2'-Deoxyguanosine Common oxidized form of deoxyguanosine in which C-8 position of guanine base has a carbonyl group. 2'-Deoxy-7,8-Dihydro-8-Oxoguanosine,2'-Deoxy-8-Hydroxyguanosine,2'-Deoxy-8-Oxo-7,8-Dihydroguanosine,2'-Deoxy-8-Oxoguanosine,7,8-Dihydro-8-Oxo-2'-Deoxyguanosine,7-Hydro-8-Oxodeoxyguanosine,8-Hydroxydeoxyguanosine,8-Oxo-2'-Deoxyguanosine,8-Oxo-7,8-Dihydro-2'-Deoxyguanosine,8-Oxo-7,8-Dihydrodeoxyguanosine,8-Oxo-7-Hydrodeoxyguanosine,8-Oxo-Deoxyguanosine,8OHdG,8-OH-dG,8-oxo-dG,8-oxo-dGuo,8-oxodG,8-oxodGuo,2' Deoxy 7,8 Dihydro 8 Oxoguanosine,2' Deoxy 8 Hydroxyguanosine,2' Deoxy 8 Oxo 7,8 Dihydroguanosine,2' Deoxy 8 Oxoguanosine,7 Hydro 8 Oxodeoxyguanosine,7,8 Dihydro 8 Oxo 2' Deoxyguanosine,8 Hydroxy 2' Deoxyguanosine,8 Hydroxydeoxyguanosine,8 Oxo 2' Deoxyguanosine,8 Oxo 7 Hydrodeoxyguanosine,8 Oxo 7,8 Dihydro 2' Deoxyguanosine,8 Oxo 7,8 Dihydrodeoxyguanosine,8 Oxo Deoxyguanosine

Related Publications

S Tahara, and M Matsuo, and T Kaneko
August 2011, Molecular aspects of medicine,
S Tahara, and M Matsuo, and T Kaneko
April 1995, The Journal of nutrition,
S Tahara, and M Matsuo, and T Kaneko
February 1999, Free radical biology & medicine,
S Tahara, and M Matsuo, and T Kaneko
September 2014, Archives of dermatological research,
S Tahara, and M Matsuo, and T Kaneko
August 2007, Neurochemical research,
S Tahara, and M Matsuo, and T Kaneko
January 2007, Acta biochimica Polonica,
S Tahara, and M Matsuo, and T Kaneko
July 1994, Research communications in molecular pathology and pharmacology,
S Tahara, and M Matsuo, and T Kaneko
February 1998, Mechanisms of ageing and development,
S Tahara, and M Matsuo, and T Kaneko
December 1980, The Journal of nutrition,
S Tahara, and M Matsuo, and T Kaneko
January 1975, Biochemical Society transactions,
Copied contents to your clipboard!