Conformal photon-beam therapy with transverse magnetic fields: a Monte Carlo study. 2001

X A Li, and L Reiffel, and J Chu, and S Naqvi
Department of Radiation Oncology, University of Maryland, Baltimore, 21201-1595, USA. ali001@umaryland.edu

This work studies the idea of using strong transverse magnetic (B) fields with high-energy photon beams to enhance dose distributions for conformal radiotherapy. EGS4 Monte Carlo code is modified to incorporate charged particle transport in B fields and is used to calculate effects of B fields on dose distributions for a variety of high-energy photon beams. Two types of hypothetical B fields, curl-free linear fields and dipole fields, are used to demonstrate the idea. The major results from the calculation for the linear B fields are: (1) strong transverse B fields (> 1 T) with high longitudinal gradients (G) (> 0.5 T/cm) can produce dramatic dose enhancement as well as dose reduction in localized regions for high-energy photon beams; (2) the magnitude of the enhancement (reduction) and the geometric extension and the location of this enhancement (reduction) depend on the strength and gradient of the B field, and photon-beam energy; (3) for a given B field, the dose enhancement generally increases with photon-beam energy; (4) for a 5 T B field with infinite longitudinal gradient (solenoidal field), up to 200% of dose enhancement and 40% of dose reduction were obtained along the central axis of a 15 MV photon beam; and (5) a 60% of dose enhancement was observed over a 2 cm depth region for the 15 MV beam when B = 5 T and G = 2.5 T/cm. These results are also observed, qualitatively, in the calculation with the dipole B fields. Calculations for a variety of B fields and beam configurations show that, by employing a well-designed B field in photon-beam radiotherapy, it is possible to achieve a significant dose enhancement within the target, while obtaining a substantial dose reduction over critical structures.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical
D020266 Radiotherapy, Conformal A therapy using IONIZING RADIATION where there is improved dose homogeneity within the tumor and reduced dosage to uninvolved structures. The precise shaping of dose distribution is achieved via the use of computer-controlled multileaf collimators. Conformal Radiotherapy,3-D Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapy,3-D Conformal Radiotherapies,Conformal Radiotherapies,Conformal Radiotherapies, 3-D,Conformal Radiotherapies, Three-Dimensional,Conformal Radiotherapy, 3-D,Conformal Radiotherapy, Three-Dimensional,Radiotherapies, 3-D Conformal,Radiotherapies, Conformal,Radiotherapies, Three-Dimensional Conformal,Radiotherapy, 3-D Conformal,Radiotherapy, Three-Dimensional Conformal,Three Dimensional Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapies

Related Publications

X A Li, and L Reiffel, and J Chu, and S Naqvi
December 2000, Medical physics,
X A Li, and L Reiffel, and J Chu, and S Naqvi
June 1999, Medical physics,
X A Li, and L Reiffel, and J Chu, and S Naqvi
June 2002, Physics in medicine and biology,
X A Li, and L Reiffel, and J Chu, and S Naqvi
October 2006, Nihon Hoshasen Gijutsu Gakkai zasshi,
X A Li, and L Reiffel, and J Chu, and S Naqvi
October 2000, Physics in medicine and biology,
X A Li, and L Reiffel, and J Chu, and S Naqvi
July 2021, Nanomaterials (Basel, Switzerland),
X A Li, and L Reiffel, and J Chu, and S Naqvi
September 1999, Medical physics,
X A Li, and L Reiffel, and J Chu, and S Naqvi
February 2023, Physics in medicine and biology,
X A Li, and L Reiffel, and J Chu, and S Naqvi
September 2008, Physics in medicine and biology,
X A Li, and L Reiffel, and J Chu, and S Naqvi
November 2004, Medical physics,
Copied contents to your clipboard!