Maximal predicted duration of viremia in bluetongue virus-infected cattle. 2001

R S Singer, and N J MacLachlan, and T E Carpenter
Department of Veterinary Pathobiology, University of Illinois, Urbana 61802, USA.

Central to the development of rational trade policies pertaining to bluetongue virus (BTV) infection is determination of the risk posed by ruminants previously exposed to the virus. Precise determination of the maximal duration of infectious viremia is essential to the development of an appropriate quarantine period prior to movement of animals from BTV-endemic to BTV-free regions. The objective of this study was to predict the duration of detectable viremia in BTV-infected cattle using a probabilistic modeling analysis of existing data. Data on the duration of detectable viremia in cattle were obtained from previously published studies. Data sets were created from a large field study of naturally infected cattle in Australia and from experimental infections of cattle with Australian and US serotypes of BTV. Probability distributions were fitted to the pooled empirical data, and the 3 probability distributions that provided the best fit to the data were the gamma, Weibull, and lognormal probability distributions. These asymmetric probability distributions are often well suited for decay processes, such as the time to termination of detectable viremia. The analyses indicated a > 99% probability of detectable BTV viremia ceasing after < or = 9 weeks of infection in adult cattle and after a slightly longer interval in BTV-infected, colostrum-deprived newborn calves.

UI MeSH Term Description Entries
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D001819 Bluetongue A reovirus infection, chiefly of sheep, characterized by a swollen blue tongue, catarrhal inflammation of upper respiratory and gastrointestinal tracts, and often by inflammation of sensitive laminae of the feet and coronet. Blue Tongue,Tongue, Blue
D001820 Bluetongue virus The type species of ORBIVIRUS causing a serious disease in sheep, especially lambs. It may also infect wild ruminants and other domestic animals. Ovine Catarrhal Fever Virus,Blue Tongue Virus,Blue Tongue Viruses,Bluetongue Viruses
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002418 Cattle Diseases Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus. Bovine Diseases,Bovine Disease,Cattle Disease,Disease, Bovine,Disease, Cattle,Diseases, Bovine,Diseases, Cattle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014766 Viremia The presence of viruses in the blood. Viremias
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

R S Singer, and N J MacLachlan, and T E Carpenter
October 2001, Journal of wildlife diseases,
R S Singer, and N J MacLachlan, and T E Carpenter
April 1969, American journal of veterinary research,
R S Singer, and N J MacLachlan, and T E Carpenter
January 1973, Proceedings, annual meeting of the United States Animal Health Association,
R S Singer, and N J MacLachlan, and T E Carpenter
August 2002, Veterinary microbiology,
R S Singer, and N J MacLachlan, and T E Carpenter
September 2021, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology],
R S Singer, and N J MacLachlan, and T E Carpenter
September 1983, American journal of veterinary research,
R S Singer, and N J MacLachlan, and T E Carpenter
January 2004, Veterinaria italiana,
R S Singer, and N J MacLachlan, and T E Carpenter
November 1977, American journal of veterinary research,
R S Singer, and N J MacLachlan, and T E Carpenter
January 2005, Veterinaria italiana,
R S Singer, and N J MacLachlan, and T E Carpenter
July 1982, Veterinary microbiology,
Copied contents to your clipboard!