The manganese stabilizing protein (MSP) and the control of O2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. 2001

D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
Department of Biological Sciences, 1392 Lilly Hall of Life Sciences, Purdue University, 47907, West Lafayette, IN, USA.

The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142 temporally separates N2 fixation from photosynthesis. To better understand the processes by which photosynthesis is regulated, we have analyzed Photosystem (PS) II O2 evolution and the PSII lumenal proteins, especially the Mn stabilizing protein (MSP). We describe a procedure using glycine betaine to isolate photosynthetic membranes from Cyanothece sp. that have high rates of PSI and PSII activity. Analysis with these membranes demonstrated similar patterns of O2 evolution in vivo and in vitro, with a trough at the time of maximal N2 fixation and with a peak in the late light period. The pattern of PSI activity was also similar in vivo and in vitro. We cloned the genes for MSP (psbO) and the 12 kDa protein (psbU) and analyzed their transcriptional properties throughout the diurnal cycle. We suggest that the changes in PSII activity in Cyanothece sp. were due to conformational changes in a highly flexible MSP, a suggestion which can now be studied in a chimera. The Cyanothece sp. psbO gene has been transformed into Synechocystis sp. PCC 6803; MSP and O2 evolution in the resulting transformant had properties that were similar to those in Cyanothece sp., providing additional confirmation for the properties of Cyanothece sp. MSP.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
August 2013, Proceedings of the National Academy of Sciences of the United States of America,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
November 1997, Plant physiology,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
July 2010, Applied and environmental microbiology,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
November 2018, Journal of proteome research,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
April 1998, Plant physiology,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
January 1995, Aquaculture (Amsterdam, Netherlands),
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
June 2009, Journal of phycology,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
January 2012, PLoS computational biology,
D L Tucker, and K Hirsh, and H Li, and B Boardman, and L A Sherman
December 1999, Biochimica et biophysica acta,
Copied contents to your clipboard!