Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation. 2001

B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, University of Nijmegen, 6525 ED Nijmegen, The Netherlands. bmkramer@sci.kun.nl

The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of alpha-melanophore-stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functional organization of different neuropeptide Y (NPY)-containing cell groups in the Xenopus SC in relation to background adaptation. A ventrolateral, a dorsomedial, and a caudal group were distinguished, differing in location as well as in number, size, and shape of their cells. They also show different degrees of NPY immunoreactivity in response to different background adaptation conditions. In situ hybridization using a Xenopus mRNA probe for the exocytosis protein DOC2 revealed that melanotrope cells of black-adapted animals have a much higher expression of DOC2-mRNA than white-adapted ones. This establishes that the degree of DOC2-mRNA expression is a good parameter to measure cellular secretory activity in Xenopus. We show that in the ventrolateral SC group, more NPY-positive neurons express DOC2-mRNA in white- than in black-adapted animals. In contrast, NPY-positive neurons in the dorsomedial group have a high secretory activity under the black-adaptation condition. We propose that in black-adapted animals, NPY-positive neurons in the ventrolateral group, known to inhibit the melanotrope cells in white-adapted animals synaptically, are inhibited by NPY-containing interneurons in the dorsmedial group. NPY-positive neurons in the caudal group have similar secretory dynamics as the dorsomedial NPY neurons, indicating that they also play a role in background adaptation, distinct from that exerted by the ventrolateral and dorsomedial group.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
May 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
March 1987, Brain research,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
May 1993, Annals of the New York Academy of Sciences,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
July 1990, General and comparative endocrinology,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
December 1997, Journal of chemical neuroanatomy,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
January 1998, Brain, behavior and evolution,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
August 1993, Neuroscience,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
July 1995, The Journal of endocrinology,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
April 2009, Annals of the New York Academy of Sciences,
B M Kramer, and J Welting, and C A Berghs, and B G Jenks, and E W Roubos
February 1996, Neuroscience,
Copied contents to your clipboard!