Generation of oligodendroglial progenitors from neural stem cells. 1998

S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA.

To understand how the differentiation of stem cells to oligodendroglial progenitors is regulated, we established cultures of neural stem cells from neonatal rat striatum in the presence of epidermal growth factor (EGF) as free-floating neurospheres that were then exposed to an increasing amount of B104 cell-conditioned medium (B104CM). The resultant cells proliferated in response to B104CM but no longer to EGF. In vitro analysis and transplantation studies indicated that these cells were committed to the oligodendroglial lineage, and they were thus referred to as oligospheres. Further characterization of their expression of early markers, cell cycle, migration, and self-renewal suggests that they were pre-O2A progenitors. RT-PCR analysis indicated that the oligosphere cells expressed mRNAs of platelet-derived growth factor alpha receptor in addition to fibroblast growth factor receptor but not EGF receptor; the latter two receptor mRNAs were expressed by neurosphere cells. Thus, the progression of stem cells to oligodendroglial progenitors is likely induced by factors in B104CM.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D017072 Neostriatum The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2007, Methods in molecular biology (Clifton, N.J.),
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
March 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution,
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2019, Methods in molecular biology (Clifton, N.J.),
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2021, Frontiers in cell and developmental biology,
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
December 2001, Nature biotechnology,
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2015, Methods in molecular biology (Clifton, N.J.),
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2014, Methods in molecular biology (Clifton, N.J.),
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2020, Methods in molecular biology (Clifton, N.J.),
S C Zhang, and C Lundberg, and D Lipsitz, and L T O'Connor, and I D Duncan
January 2007, Acta medica (Hradec Kralove),
Copied contents to your clipboard!