Application of the transition state theory to water transport across cell membranes. 2001

M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
Department of Physiology, School of Health Sciences, Fujita Health University, Toyoake, Japan.

We have applied the transition state theory of Eyring et al. (The Theory of Rate Processes, McGraw-Hill, 1941) to water transport across cell membranes. We have then evaluated free energy (Delta F(not equal)), enthalpy (Delta H(not equal)) and entropy (Delta S(not equal)) of activation for water permeation across membranes, such as Arbacia eggs, Xenopus oocytes with or without aquaporin water channels, mammalian erythrocytes, aquaporin proteoliposomes, liposomes and collodion membrane. Delta H(not equal) was found to be correlated with Delta S(not equal). This is so-called Delta H(not equal) and Delta S(not equal) compensation over the ranges of Delta H(not equal) and Delta S(not equal) from 2 to 22 kcal/mol and from -26 to 45 e.u., respectively, indicating that low Delta H(not equal) values correspond to negative Delta S(not equal). Large positive Delta S(not equal) and high Delta H(not equal) values might be accompanied by reversible breakage of secondary bonds in the membrane, presumably in membrane lipid bilayer. Largely negative Delta S(not equal) and low Delta H(not equal) values for aquaporin water channels, aquaporin proteoliposomes and porous collodion membrane could be explained by the immobilization of permeating water molecules in the membrane, i.e., the partial loss of rotational and/or translational freedoms of water molecules in water channels.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D003101 Collodion A nitrocellulose solution in ether and alcohol. Collodion has a wide range of uses in industry including applications in the manufacture of photographic film, in fibers, in lacquers, and in engraving and lithography. In medicine it is used as a drug solvent and a wound sealant. Nitrocellulose,Celloidin,Cellulose Nitrate,Collodion Cotton,Pyroxylin,Cotton, Collodion,Nitrate, Cellulose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
January 1996, The American journal of physiology,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
June 1994, FEBS letters,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
January 1970, Annual review of physiology,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
February 1964, Science (New York, N.Y.),
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
March 1971, Nature: New biology,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
January 1995, ASAIO journal (American Society for Artificial Internal Organs : 1992),
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
May 1970, Proceedings of the National Academy of Sciences of the United States of America,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
April 2014, Plant physiology,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
September 1964, American scientist,
M Sogami, and S Era, and M Murakami, and Y Seo, and H Watari, and N Uyesaka
January 1980, Journal of inorganic biochemistry,
Copied contents to your clipboard!