Dimethylarsinic acid induces 8-hydroxy-2'-deoxyguanosine formation in the kidney of NCI-Black-Reiter rats. 2001

M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
Department of Pathology, Osaka City University Medical School, 1-4-3, Asahi-mach, Abeno-ku, 545-8585, Osaka, Japan.

Dirnethylarsenic peroxyl radical [(CH(3))(2)AsOO] has been postulated to be responsible for DNA damage induced by dimethylarsinic acid (DMA). In an effort to elucidate the possible mechanism of tumor-inducing potential of DMA, an experiment was designed to investigate the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a specific marker of oxidative base damage in the kidney tissues of NCI-Black Reiter (NBR) rats. Animals were divided into four groups and administered the vehicle - saline, 5, 10 and 20 mg/kg body weight respectively of DMA by gavage, once a day, 5 days a week, for a period of 4 weeks. DMA induced increase of 8-OHdG levels in the kidney of the rats treated, with the highest level at the dose of 10 mg/kg body weight. Analysis of the kidney for cell proliferation employing PCNA-positive index showed greater proliferation in the tissues of treated rats. However, DMA did not have any influence on apoptosis in this regimen. Histopathological examination of the kidney selections revealed the presence of vacuolated degeneration and dilation of the proximal tubule cells in two groups (10 and 20 mg/kg body weight). This study provides evidence to substantiate the role of DMA in inducing oxidative DNA damage in the kidney.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D002101 Cacodylic Acid An arsenical that has been used as a dermatologic agent and as an herbicide. Cacodylate,Dimethylarsinate,Dimethylarsinic Acid,Acid, Cacodylic,Acid, Dimethylarsinic
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006540 Herbicides Pesticides used to destroy unwanted vegetation, especially various types of weeds, grasses (POACEAE), and woody plants. Some plants develop HERBICIDE RESISTANCE. Algaecide,Algicide,Herbicide,Algaecides,Algicides
D000080242 8-Hydroxy-2'-Deoxyguanosine Common oxidized form of deoxyguanosine in which C-8 position of guanine base has a carbonyl group. 2'-Deoxy-7,8-Dihydro-8-Oxoguanosine,2'-Deoxy-8-Hydroxyguanosine,2'-Deoxy-8-Oxo-7,8-Dihydroguanosine,2'-Deoxy-8-Oxoguanosine,7,8-Dihydro-8-Oxo-2'-Deoxyguanosine,7-Hydro-8-Oxodeoxyguanosine,8-Hydroxydeoxyguanosine,8-Oxo-2'-Deoxyguanosine,8-Oxo-7,8-Dihydro-2'-Deoxyguanosine,8-Oxo-7,8-Dihydrodeoxyguanosine,8-Oxo-7-Hydrodeoxyguanosine,8-Oxo-Deoxyguanosine,8OHdG,8-OH-dG,8-oxo-dG,8-oxo-dGuo,8-oxodG,8-oxodGuo,2' Deoxy 7,8 Dihydro 8 Oxoguanosine,2' Deoxy 8 Hydroxyguanosine,2' Deoxy 8 Oxo 7,8 Dihydroguanosine,2' Deoxy 8 Oxoguanosine,7 Hydro 8 Oxodeoxyguanosine,7,8 Dihydro 8 Oxo 2' Deoxyguanosine,8 Hydroxy 2' Deoxyguanosine,8 Hydroxydeoxyguanosine,8 Oxo 2' Deoxyguanosine,8 Oxo 7 Hydrodeoxyguanosine,8 Oxo 7,8 Dihydro 2' Deoxyguanosine,8 Oxo 7,8 Dihydrodeoxyguanosine,8 Oxo Deoxyguanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
December 1998, Cancer letters,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
February 1989, Carcinogenesis,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
July 1998, Carcinogenesis,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
January 1991, Chemico-biological interactions,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
May 2002, Diabetes,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
March 2018, Investigative ophthalmology & visual science,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
October 1994, Carcinogenesis,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
November 2008, Free radical biology & medicine,
M Vijayaraghavan, and H Wanibuchi, and R Karim, and S Yamamoto, and C Masuda, and D Nakae, and Y Konishi, and S Fukushima
April 1997, Mutation research,
Copied contents to your clipboard!