Temperature and preillumination dependence of delayed fluorescence of spinach chloroplasts. 1975

B R Velthuys, and J Amesz

Delayed fluorescence (luminescence) from spinach chloroplasts, induced by short saturating flashes, was studied in the temperature region between 0 and minus 40 degrees C. At these temperatures, in contrast to what is observed at room temperature, luminescence at 40 ms after a flash was strongly dependent, with period four, on the number of preilluminating flashes (given at room temperature, before cooling). At minus 35 degrees C luminescence of chloroplasts preilluminated with two flashes (the optimal preillumination) was about 15 times larger than that of dark-adapted chloroplasts. The intensity of luminescence obtained with preilluminated chloroplasts increased steeply below minus 10 degrees C, presumably partly due to accumulation of reduced acceptor (Q minus), and reached a maximum at minus 35 degrees C. In the presence of 50 mM NH4Cl; at temperatures below minus 20 degrees C luminescence at 40 ms was decreased by NH4C1. At room temperature a strongly enhanced 40-ms luminescence was observed after the third and following flashes. The results indicate that both the S2 to S3 and the S3 to S4 conversion are affected by NlH4Cl. Inhibitors of Q minus reoxidation, like 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea, did only slightly affect the preillumination dependence of luminescence at sub-zero temperatures if they were added after the preillumination. This indicates that these substances by themselves do not accelerate the deactivation of S2 and S3.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003624 Darkness The absence of light. Darknesses
D004237 Diuron A pre-emergent herbicide. DCMU,3-(3,4-Dichlorophenyl)-1,1-dimethylurea
D000643 Ammonium Chloride An acidifying agent that has expectorant and diuretic effects. Also used in etching and batteries and as a flux in electroplating. Sal Ammoniac,Ammoniac, Sal,Chloride, Ammonium
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

B R Velthuys, and J Amesz
March 1974, Biochimica et biophysica acta,
B R Velthuys, and J Amesz
January 1969, Biophysical journal,
B R Velthuys, and J Amesz
April 1971, Biochimica et biophysica acta,
B R Velthuys, and J Amesz
November 1972, Biochimica et biophysica acta,
B R Velthuys, and J Amesz
March 1991, Archives of biochemistry and biophysics,
B R Velthuys, and J Amesz
July 1975, Biochimica et biophysica acta,
B R Velthuys, and J Amesz
August 1976, Biochemical and biophysical research communications,
B R Velthuys, and J Amesz
December 1973, Biochimica et biophysica acta,
B R Velthuys, and J Amesz
September 1999, General physiology and biophysics,
Copied contents to your clipboard!