Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. 2001

J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China. chiajs@ha.mc.edu

Streptococcus mutans, which causes dental caries in the human oral cavity and occasionally causes infective endocarditis in the heart, withstands adverse environmental stress through diverse alterations in protein synthesis. Differential gene expression in response to environmental stress was analyzed by RNA fingerprinting using arbitrarily primed PCR with a panel of 11mer primers designed for differential display in Enterobacteriaceae. Dot and Northern blot hybridization confirmed that the transcription of several genes was up- or down-regulated following exposure to acid shock from pH 7.5 to 5.5. RNA of a gene designated AP-185 (acid-stress protein) was induced specifically by acid treatment, while RNA of GSP-781 (general-stress protein) was up-regulated significantly when bacteria were exposed to high osmolarity and temperature, as well as low pH. The deduced amino acid sequence of AP-185 shares homology (78% identity) with branched-chain amino acid aminotransferase. Cloning and sequence analysis of GSP-781 revealed a potential secreted protein of a molecular mass of about 43 kDa and with a pI predicted to be 5.5. Transcriptional levels of another gene, designated AR-186 (acid-repressed protein), which encodes putative aconitase, were repressed by acid treatment but were enhanced by plasma or serum components. Analogous results were identified in icd and citZ genes, and repression of these genes, along with AR-186, was also observed when they were exposed to high osmolarity and temperature. These results indicate that differential regulation of specific genes at the transcriptional level is triggered by different stress and that genes responsible for glutamate biosynthesis in the citrate pathway are coordinately regulated during the stress response of S. mutans.

UI MeSH Term Description Entries
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D019289 Pyruvic Acid An intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures. (From Stedman, 26th ed) Pyruvate,Acid, Pyruvic
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
April 1998, Nucleic acids research,
J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
January 2014, International journal of genomics,
J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
September 2003, Environmental microbiology,
J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
March 2001, The international journal of neuropsychopharmacology,
J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
March 1996, Biochemical and biophysical research communications,
J S Chia, and Y Y Lee, and P T Huang, and J Y Chen
December 1998, Microbial pathogenesis,
Copied contents to your clipboard!