Overexpression of the DNA-binding domain of poly(ADP-ribose) polymerase inhibits rejoining of ionizing radiation-induced DNA double-strand breaks. 2001

V Rudat, and N Bachmann, and J H Küpper, and K J Weber
Abteilung Klinische Radiologie, Universitätsklinikum Heidelberg, Germany.

OBJECTIVE To assess the influence of trans-dominant inhibition of poly(ADP-ribosyl)ation on the rejoining kinetics of radiation-induced DNA double-strand breaks (DSB). METHODS Stable transfectants of the SV40-transformed hamster cell line CO60 were used: COM3 cells contain a construct to overexpress the poly(ADP-ribose) polymerase (PARP-1) DNA-binding domain (DBD) when induced by dexamethasone, as well as a construct for the constitutive overexpression of the human glucocorticoid receptor (Hg0). COR3 are control cells containing only the Hg0 plasmid. DSB induction and rejoining in X-irradiated cells was assessed by DNA pulsed-field electrophoresis. RESULTS DSB induction was identical in both cell lines and independent of the presence of dexamethasone. DSB rejoining kinetics was independent of dexamethasone in COR3 cells and identical to COM3 cells without dexamethasone. However, in COM3 cells treated with dexamethasone to induce PARP-1 DBD overexpression, the fast component of the rejoining kinetic was largely reduced, and residual fragmentation increased concomitant with the increased damage fraction in slow rejoining. CONCLUSIONS The results indicate that inhibition of cellular PARP-1 does not affect the rate-limiting step of either fast or slow DSB rejoining. Rather, it appears that absence of poly(ADP-ribosyl)ation due to dominant negative PARP-1 expression induces a shift from rapid to slow DSB rejoining and by this mechanism PARP inhibition may increase the risk of repair failures.

UI MeSH Term Description Entries
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002477 Cells The fundamental, structural, and functional units or subunits of living organisms. They are composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary. Cell
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

V Rudat, and N Bachmann, and J H Küpper, and K J Weber
February 2006, Journal of molecular biology,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
July 2019, Nature communications,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
July 1997, Radiation research,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
October 1995, Trends in biochemical sciences,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
December 2004, The Journal of biological chemistry,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
November 1989, Journal of molecular biology,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
May 1993, Mutation research,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
June 2008, DNA repair,
V Rudat, and N Bachmann, and J H Küpper, and K J Weber
October 1995, European journal of pharmacology,
Copied contents to your clipboard!