beta1 integrin and organized actin filaments facilitate cardiomyocyte-specific RhoA-dependent activation of the skeletal alpha-actin promoter. 2001

L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.

Activation of RhoA GTPase causes actin filament bundling into stress fibers, integrin clustering, and focal adhesion formation through its action on actin cytoskeleton organization. RhoA also regulates transcriptional activity of serum response factor (SRF). Recent studies in NIH 3T3 fibroblasts have shown that SRF activation by RhoA does not require an organized cytoskeleton and may be regulated by G-actin level. In cardiac myocytes, the organization of actin fibers into myofibrils is one of the primary characteristics of cardiac differentiation and hypertrophy. The primary purpose of this study was to examine if RhoA regulates SRF-dependent gene expression in neonatal cardiomyocytes in a manner different from that observed in fibroblasts. Our results show that RhoA-dependent skeletal alpha-actin promoter activation requires beta1 integrin and a functional cytoskeleton in cardiomyocytes but not in NIH 3T3 fibroblasts. Activation of the alpha-actin promoter by RhoA is greatly potentiated (up to 15-fold) by co-expression of the integrin beta1A or beta1D isoform but is significantly reduced by 70% with a co-expressed dominant negative mutant of beta1 integrin. Furthermore, clustering of beta1 integrin with anti-beta1 integrin antibodies potentiates synergistic RhoA and beta1 integrin activation of the alpha-actin promoter. Cytochalasin D and latrunculin B, inhibitors of actin polymerization, significantly reduced RhoA-induced activation of the alpha-actin promoter. Jasplakinolide, an actin polymerizing agent, mimics the synergistic effect of RhoA and beta1 integrin on the actin promoter. These observations support the concept that RhoA regulates SRF-dependent cardiac gene expression through cross-talk with beta1 integrin signal pathway via an organized actin cytoskeleton.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
November 1998, Journal of muscle research and cell motility,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
September 2006, Translational research : the journal of laboratory and clinical medicine,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
March 2008, Endocrinology,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
August 2010, Journal of molecular and cellular cardiology,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
September 1989, Molecular and cellular biology,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
April 2002, The Journal of cell biology,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
May 1996, Biochimica et biophysica acta,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
February 1996, Journal of cell science,
L Wei, and L Wang, and J A Carson, and J E Agan, and K Imanaka-Yoshida, and R J Schwartz
April 2008, Biochemical and biophysical research communications,
Copied contents to your clipboard!