Leptin transport at the blood--cerebrospinal fluid barrier using the perfused sheep choroid plexus model. 2001

S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
Centre for Neuroscience Research at Guy's Campus, King's College London, London SE1, UK. sarah.thomas@kcl.ac.uk

Leptin is secreted by adipose tissue and thought to regulate appetite at the central level. Several studies have explored the central nervous system (CNS) entry of this peptide across the blood-brain and blood-cerebrospinal fluid (CSF) barriers in parallel, but this is the first to explore the transport kinetics of leptin across the choroid plexus (blood-CSF barrier) in isolation from the blood-brain barrier (BBB). This is important as the presence of both barriers can lead to ambiguous results from transport studies. The model used was the isolated Ringer perfused sheep choroid plexus. The steady-state extraction of [(125)I]leptin (7.5 pmol l(-1)) at the blood face of the choroid plexus was 21.1+/-5.7%, which was greater than extraction of the extracellular marker, giving a net cellular uptake for [(125)I]leptin (14.0+/-3.7%). In addition, trichloroacetic acid precipitable [(125)I] was detected in newly formed CSF, indicating intact protein transfer across the blood-CSF barrier. Human plasma concentrations of leptin are reported to be 0.5 nM. Experiments using 0.5 nM leptin in the Ringer produced a concentration of leptin in the CSF of 12 pM (similar to that measured in humans). [(125)I]Leptin uptake at the blood-plexus interface using the single-circulation paired tracer dilution technique (uptake in <60 s) indicated the presence of a saturable transport system, which followed Michaelis-Menten-type kinetics (K(m)=16.3+/-1.8 nM, V(max)=41.2+/-1.4 pmol min(-1) g(-1)), and a non-saturable component (K(d)=0.065+/-0.002 ml min(-1) g(-1)). In addition, secretion of new CSF by the choroid plexuses was significantly decreased with leptin present. This study indicates that leptin transport at the blood-CSF barrier is via saturable and non-saturable mechanisms and that the choroid plexus is involved in the regulation of leptin availability to the brain.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002555 Cerebrospinal Fluid A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES. Cerebro Spinal Fluid,Cerebro Spinal Fluids,Cerebrospinal Fluids,Fluid, Cerebro Spinal,Fluid, Cerebrospinal,Fluids, Cerebro Spinal,Fluids, Cerebrospinal,Spinal Fluid, Cerebro,Spinal Fluids, Cerebro
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes

Related Publications

S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
May 2020, Fluids and barriers of the CNS,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
April 2009, Experimental gerontology,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
October 1992, Brain research,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
February 2004, Current drug metabolism,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
May 1985, The Journal of physiology,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
August 2010, Cerebrospinal fluid research,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
July 1975, The Journal of pharmacology and experimental therapeutics,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
January 2002, Brain research,
S A Thomas, and J E Preston, and M R Wilson, and C L Farrell, and M B Segal
July 2019, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!