Interaction of Bordetella pertussis with mast cells, modulation of cytokine secretion by pertussis toxin. 2001

N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
Department of Medical Microbiology and Immunology, University of Göteborg, Sweden. nathalie.mielcarek@pasteur-lille.fr

Together with macrophages and dendritic cells, mast cells have recently been shown to interact with certain pathogenic bacteria and present microbial antigens to the immune system. We show here that Bordetella pertussis can adhere to and be phagocytosed by mast cells. In addition, mast cells are able to process and present B. pertussis antigens to T lymphocytes. Furthermore, exposure of mast cells to B. pertussis induced the release of the proinflammatory cytokines tumour necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6). The release of IL-6 was strongly reduced by pertussis toxin expressed by B. pertussis. The production of IL-10, but not that of IL-4, by mast cells was also inhibited by pertussis toxin. Depletion of mast cells in vivo resulted in significant reduction of early TNF-alpha production in bronchoalveolar lavage (BAL) fluids of B. pertussis-infected mice. These data suggest that mast cells may play a role in the induction of immune responses against B. pertussis through the release of cytokines, especially TNF-alpha.

UI MeSH Term Description Entries
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D001886 Bordetella pertussis A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath. Bacterium tussis-convulsivae,Haemophilus pertussis,Hemophilus pertussis
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
August 2021, Toxins,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
March 2003, Infection and immunity,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
February 1991, The Journal of infectious diseases,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
January 2004, Journal of bacteriology,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
May 2002, Infection and immunity,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
April 2002, Microbiology (Reading, England),
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
August 1995, Experimental dermatology,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
March 2002, Infection and immunity,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
September 1991, Journal of biotechnology,
N Mielcarek, and E H Hörnquist, and B R Johansson, and C Locht, and S N Abraham, and J Holmgren
July 2000, Infection and immunity,
Copied contents to your clipboard!