Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions. 2001

C R Madden, and M J Finegold, and B L Slagle
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.

Chronic infection with hepatitis B virus (HBV) is one of the major etiological factors in the development of human hepatocellular carcinoma. Transgenic mice that express the HBV X protein (HBx) have previously been shown to be more sensitive to the effects of hepatocarcinogens. Although the mechanism for this cofactor role remains unknown, the ability of HBx to inhibit DNA repair and to influence cell cycle progression suggests two possible pathways. To investigate these possibilities in vivo, we treated double-transgenic mice that both express HBx (ATX mice) and possess a bacteriophage lambda transgene with the hepatocarcinogen diethylnitrosamine (DEN). Histological examination of liver tissue confirmed that DEN-treated ATX mice developed approximately twice as many focal lesions of basophilic hepatocytes as treated wild-type littermates. Treatment of mice with DEN resulted in a six- to eightfold increase in the mutation frequency (MF), as measured by a functional analysis of the lambda transgene. HBx expression was confirmed by immunoprecipitation and Western blotting and was associated with a modest 23% increase in the MF. Importantly, the extent of hepatocellular proliferation in 14-day-old mice, as measured by the detection of proliferating cell nuclear antigen and by the incorporation of 5-bromo-2'-deoxyuridine, was determined to be approximately twofold higher in ATX livers than in wild-type livers. These results are consistent with a model in which HBx expression contributes to the development of DEN-mediated carcinogenesis by promoting the proliferation of altered hepatocytes rather than by directly interfering with the repair of DNA lesions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011230 Precancerous Conditions Pathological conditions that tend eventually to become malignant. Preneoplastic Conditions,Condition, Preneoplastic,Conditions, Preneoplastic,Preneoplastic Condition,Condition, Precancerous,Conditions, Precancerous,Precancerous Condition
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004052 Diethylnitrosamine A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. Nitrosodiethylamine,N-Nitrosodiethylamine,N Nitrosodiethylamine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA

Related Publications

C R Madden, and M J Finegold, and B L Slagle
July 1994, Journal of hepatology,
C R Madden, and M J Finegold, and B L Slagle
January 2011, Nutrition and cancer,
C R Madden, and M J Finegold, and B L Slagle
September 2016, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
C R Madden, and M J Finegold, and B L Slagle
August 2007, Hepatology (Baltimore, Md.),
C R Madden, and M J Finegold, and B L Slagle
January 2011, Journal of gastroenterology and hepatology,
C R Madden, and M J Finegold, and B L Slagle
July 2006, Cancer cell,
C R Madden, and M J Finegold, and B L Slagle
August 1996, Journal of virology,
C R Madden, and M J Finegold, and B L Slagle
January 2022, Frontiers in oncology,
Copied contents to your clipboard!