Isolation and characterization of type IIS restriction endonuclease from Neisseria cuniculi ATCC 14688. 2001

B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
Department of Microbiology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.

Neisseria cuniculi produces the restriction enzyme NcuI which is an isoschizomer of MboII. We have demonstrated that NcuI recognizes a pentanucleotide sequence (5'-GAAGA-3'/3'-CTTCT-5'), and cleaves the DNA 8 and 7 nucleotides downstream from the recognition site leaving a single 3'-protruding nucleotide. We have purified this enzyme to electrophoretic homogeneity using a four-step chromatographic procedure. NcuI endonuclease is a monomeric protein with a M(r)=48,000+/-1000 under denaturing conditions. The properties of NcuI are consistent with those for MboII, the position of the cleavage site being identical and the pH profile and divalent cation requirements being similar. Moreover, NcuI cross-reacts strongly with anti-MboII serum suggesting the presence of similar antigenic determinants. We have determined the sequence of 20 N-terminal amino acids for NcuI and concluded that this sequence is identical to the N-terminal portion of the MboII enzyme.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009343 Neisseria A genus of gram-negative, aerobic, coccoid bacteria whose organisms are part of the normal flora of the oropharynx, nasopharynx, and genitourinary tract. Some species are primary pathogens for humans.
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II
D015280 DNA Restriction-Modification Enzymes Systems consisting of two enzymes, a modification methylase and a restriction endonuclease. They are closely related in their specificity and protect the DNA of a given bacterial species. The methylase adds methyl groups to adenine or cytosine residues in the same target sequence that constitutes the restriction enzyme binding site. The methylation renders the target site resistant to restriction, thereby protecting DNA against cleavage. DNA Restriction Modification Enzyme,DNA Restriction-Modification Enzyme,Restriction Modification System,Restriction-Modification System,Restriction-Modification Systems,DNA Restriction Modification Enzymes,Restriction Modification Systems,Enzyme, DNA Restriction-Modification,Enzymes, DNA Restriction-Modification,Modification System, Restriction,Modification Systems, Restriction,Restriction-Modification Enzyme, DNA,Restriction-Modification Enzymes, DNA,System, Restriction Modification,System, Restriction-Modification,Systems, Restriction Modification,Systems, Restriction-Modification

Related Publications

B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
April 1988, Nucleic acids research,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
May 1995, Gene,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
January 2015, PloS one,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
March 2007, Research in microbiology,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
January 1987, Prikladnaia biokhimiia i mikrobiologiia,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
August 2008, Biochemistry,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
May 2023, Nucleic acids research,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
February 1990, FEMS microbiology letters,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
July 2010, PloS one,
B Furmanek, and K Gromek, and M Sektas, and T Kaczorowski
May 2009, Nucleic acids research,
Copied contents to your clipboard!