Light and electron microscopic study of the distribution of substance P-immunoreactive fibers and neurokinin-1 receptors in the skin of the rat lower lip. 2001

I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Quebec, Canada.

Cutaneous antidromic vasodilatation and plasma extravasation, two phenomena that occur in neurogenic inflammation, are partially blocked by substance P (SP) receptor antagonists and are known to be mediated in part by mast cell-released substances, such as histamine, serotonin, and nitric oxide. In an attempt to provide a morphological substrate for the above phenomena, we applied light and electron microscopic immunocytochemistry to investigate the pattern of SP innervation of blood vessels and its relationship to mast cells in the skin of the rat lower lip. Furthermore, we examined the distribution of SP (neurokinin-1) receptors and their relationship to SP-immunoreactive (IR) fibers. Our results confirmed that SP-IR fibers are found in cutaneous nerves and that terminal branches are observed around blood vessels and penetrating the epidermis. SP-IR fibers also innervated hair follicles and sebaceous glands. At the ultrastructural level, SP-IR varicosities were observed adjacent to arterioles, capillaries, venules, and mast cells. The varicosities possessed both dense core vesicles and agranular synaptic vesicles. We quantified the distance between SP-IR varicosities and blood vessel endothelial cells. SP-IR terminals were located within 0.23-5.99 microm from the endothelial cell layer in 82.7% of arterioles, in 90.2% of capillaries, and in 86.9% of venules. Although there was a trend for SP-IR fibers to be located closer to the endothelium of venules, this difference was not significant. Neurokinin-1 receptor (NK-1r) immunoreactivity was most abundant in the upper dermis and was associated with the wall of blood vessels. NK-1r were located in equal amounts on the walls of arterioles, capillaries, and venules that were innervated by SP-IR fibers. The present results favor the concept of a participation of SP in cutaneous neurogenic vasodilatation and plasma extravasation both by an action on blood vessels after binding to the NK-1r and by causing the release of substances from mast cells after diffusion through the connective tissue.

UI MeSH Term Description Entries
D008046 Lip Either of the two fleshy, full-blooded margins of the mouth. Philtrum,Lips,Philtrums
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D000078404 Epidermal Cells Cells from the outermost, non-vascular layer (EPIDERMIS) of the skin. Epidermal Cell,Epidermic Cells,Cell, Epidermal,Cell, Epidermic,Cells, Epidermic,Epidermic Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012627 Sebaceous Glands Small, sacculated organs found within the DERMIS. Each gland has a single duct that emerges from a cluster of oval alveoli. Each alveolus consists of a transparent BASEMENT MEMBRANE enclosing epithelial cells. The ducts from most sebaceous glands open into a HAIR FOLLICLE, but some open on the general surface of the SKIN. Sebaceous glands secrete SEBUM. Gland, Sebaceous,Glands, Sebaceous,Sebaceous Gland

Related Publications

I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
March 2000, The Journal of comparative neurology,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
July 1998, Cell and tissue research,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
August 1995, Cell and tissue research,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
May 1989, The Journal of comparative neurology,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
January 1991, Neuroscience,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
January 1988, Acta anatomica,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
November 1987, Brain research,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
August 1994, Cell and tissue research,
I Ruocco, and A C Cuello, and R Shigemoto, and A Ribeiro-da-Silva
March 1978, The Journal of comparative neurology,
Copied contents to your clipboard!