Measurement of human chylomicron triglyceride clearance with a labeled commercial lipid emulsion. 2001

Y Park, and B D Damron, and J M Miles, and W S Harris
University of Missouri-Kansas City, Department of Medicine and Cardiovascular Research Department, Mid America Heart Institute, Saint Luke's Hospital, 64111, USA. ypark@saint-lukes.org

Human chylomicron triglyceride (TG) kinetics has been difficult to determine directly owing to technical limitations. This report describes a new method for studying chylomicron metabolism. Healthy volunteers (n = 10) sipped a drink providing 175 mg fat x kg(-1) h(-1) for 7.5 h to produce a steady-state chylomicronemia. A commercial 10% intravenous lipid emulsion was labeled with [3H]triolein, purified by high-performance liquid chromatography, and sterilized. A trace amount of labeled emulsion was injected intravenously 30 min before (i.e., in the fasting state) and 5, 6, and 7 h after sipping began (i.e., triplicate determinations in the fed state). Chylomicron half-lives were calculated from the monoexponential decay curves, and apparent distribution volumes were estimated by back-extrapolation to time zero. Plasma and estimated chylomicron TG concentrations increased from 89+/-13 and 0.8+/-0.3 to 263+/-43 and 91+/-39 mg/dL (mean +/- SEM), respectively, with feeding. Tracer-determined chylomicron TG half-lives were 5.34+/-0.58 and 6.51+/-0.58 min during the fasting and fed states, respectively (P < 0.01). The apparent distribution volume during the fasting state was 24% greater than plasma volume (4515+/-308 vs. 3630+/-78 mL, P < 0.02), consistent with significant margination of lipid emulsion particles to endothelial binding sites. Margination was reduced during the fed state, suggesting that native chylomicrons competed with lipid emulsion particles for endothelial lipoprotein lipase. The results indicate that a radiolabeled commercial lipid emulsion is metabolized in a fashion similar to native chylomicron TG, and thus can be used to study chylomicron TG kinetics.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002914 Chylomicrons A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS. Chylomicron
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005217 Fat Emulsions, Intravenous Emulsions of fats or lipids used primarily in parenteral feeding. Intravenous Fat Emulsion,Intravenous Lipid Emulsion,Lipid Emulsions, Intravenous,Emulsion, Intravenous Fat,Emulsion, Intravenous Lipid,Emulsions, Intravenous Fat,Emulsions, Intravenous Lipid,Fat Emulsion, Intravenous,Intravenous Fat Emulsions,Intravenous Lipid Emulsions,Lipid Emulsion, Intravenous
D005260 Female Females
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes

Related Publications

Y Park, and B D Damron, and J M Miles, and W S Harris
February 2004, International journal of cardiology,
Y Park, and B D Damron, and J M Miles, and W S Harris
February 1989, The American journal of clinical nutrition,
Y Park, and B D Damron, and J M Miles, and W S Harris
March 2003, Journal of lipid research,
Y Park, and B D Damron, and J M Miles, and W S Harris
December 1958, The American journal of physiology,
Y Park, and B D Damron, and J M Miles, and W S Harris
July 1989, European journal of clinical nutrition,
Y Park, and B D Damron, and J M Miles, and W S Harris
April 1995, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Y Park, and B D Damron, and J M Miles, and W S Harris
September 2021, Annals of clinical biochemistry,
Y Park, and B D Damron, and J M Miles, and W S Harris
December 1981, Journal of pediatric surgery,
Copied contents to your clipboard!